K. Wei, Shao Peng Wang, Wei Wei, X. An, Danyang Wang, I. Alexandrov
{"title":"Gr/Cu涂层包覆铜线的高导电性","authors":"K. Wei, Shao Peng Wang, Wei Wei, X. An, Danyang Wang, I. Alexandrov","doi":"10.1680/jsuin.22.00014","DOIUrl":null,"url":null,"abstract":"Graphene/copper (Gr/Cu) coating-cladded Cu wires with high electrical conductivity and low surface roughness were successfully prepared from copper sulfate pentahydrate (CuSO4·5 H2O) containing Gr ranging from 0 to 2.0 g/L by direct current electrodeposition. The Gr defect density, surface morphology, surface roughness and electrical conductivity of Gr/Cu coating-cladded Cu wires were investigated. The results revealed that with the increasing Gr concentration the surface roughness and electrical conductivity of Gr/Cu coating-cladded Cu wires were enhanced simultaneously. When the Gr concentration was 1.2 g/L, Gr/Cu coating-cladded Cu wires possessed the lowest surface roughness of 4.241 μm and the highest electrical conductivity of 105.5% IACS. Compared with the counterpart without Gr, the surface roughness was reduced by 10.7%, and the electrical conductivity was increased by 5.4%, respectively. The models were developed to evaluate the surface roughness and electrical conductivity of Gr/Cu coating-cladded Cu wires.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High electrical conductivity of Cu wires cladded by Gr/Cu coating\",\"authors\":\"K. Wei, Shao Peng Wang, Wei Wei, X. An, Danyang Wang, I. Alexandrov\",\"doi\":\"10.1680/jsuin.22.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene/copper (Gr/Cu) coating-cladded Cu wires with high electrical conductivity and low surface roughness were successfully prepared from copper sulfate pentahydrate (CuSO4·5 H2O) containing Gr ranging from 0 to 2.0 g/L by direct current electrodeposition. The Gr defect density, surface morphology, surface roughness and electrical conductivity of Gr/Cu coating-cladded Cu wires were investigated. The results revealed that with the increasing Gr concentration the surface roughness and electrical conductivity of Gr/Cu coating-cladded Cu wires were enhanced simultaneously. When the Gr concentration was 1.2 g/L, Gr/Cu coating-cladded Cu wires possessed the lowest surface roughness of 4.241 μm and the highest electrical conductivity of 105.5% IACS. Compared with the counterpart without Gr, the surface roughness was reduced by 10.7%, and the electrical conductivity was increased by 5.4%, respectively. The models were developed to evaluate the surface roughness and electrical conductivity of Gr/Cu coating-cladded Cu wires.\",\"PeriodicalId\":22032,\"journal\":{\"name\":\"Surface Innovations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Innovations\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jsuin.22.00014\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.22.00014","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
High electrical conductivity of Cu wires cladded by Gr/Cu coating
Graphene/copper (Gr/Cu) coating-cladded Cu wires with high electrical conductivity and low surface roughness were successfully prepared from copper sulfate pentahydrate (CuSO4·5 H2O) containing Gr ranging from 0 to 2.0 g/L by direct current electrodeposition. The Gr defect density, surface morphology, surface roughness and electrical conductivity of Gr/Cu coating-cladded Cu wires were investigated. The results revealed that with the increasing Gr concentration the surface roughness and electrical conductivity of Gr/Cu coating-cladded Cu wires were enhanced simultaneously. When the Gr concentration was 1.2 g/L, Gr/Cu coating-cladded Cu wires possessed the lowest surface roughness of 4.241 μm and the highest electrical conductivity of 105.5% IACS. Compared with the counterpart without Gr, the surface roughness was reduced by 10.7%, and the electrical conductivity was increased by 5.4%, respectively. The models were developed to evaluate the surface roughness and electrical conductivity of Gr/Cu coating-cladded Cu wires.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.