实现低成本,太阳能充电射频调制解调器水下无线传感器网络

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal on Smart Sensing and Intelligent Systems Pub Date : 2020-01-01 DOI:10.21307/ijssis-2020-015
M. Abdellatif, Salma M. Maher, Ghazal M. Al-sayyad, S. Abdellatif
{"title":"实现低成本,太阳能充电射频调制解调器水下无线传感器网络","authors":"M. Abdellatif, Salma M. Maher, Ghazal M. Al-sayyad, S. Abdellatif","doi":"10.21307/ijssis-2020-015","DOIUrl":null,"url":null,"abstract":"Abstract Underwater communication (UWC) has become an attractive research field over the past few decades. This is mainly due to the increase in underwater applications such as exploration, monitoring, and warning systems. Traditional communications techniques face many obstacles when used underwater. Optical communications require line of sight which is not always maintained underwater due to turbulence. Acoustic communication does not suffer from that, however, it can only operate with very low rates. While radio frequency (RF) communication can only operate over short distances due to the attenuation from the water, it can deliver relatively high data rates and does not require line of sight nor affected by turbulence. Additionally, it does not suffer much when crossing the air–water boundaries. Moreover, underwater nodes require a new method of powering as it is not feasible to change their batteries when they are depleted. And so, we have investigated underwater solar power harvesters as a means to power the underwater nodes. In this paper, we design, implement, integrate, and test a low cost solar powered RF underwater modem to be used as a building block of an underwater wireless sensor network. The system was tested with multiple nodes to allow multi-hop communications in order to increase the communication distance. Results show that the network operates with a moderate to high throughput from end to end.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":"13 1","pages":"1 - 11"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Implementation of a low cost, solar charged RF modem for underwater wireless sensor networks\",\"authors\":\"M. Abdellatif, Salma M. Maher, Ghazal M. Al-sayyad, S. Abdellatif\",\"doi\":\"10.21307/ijssis-2020-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Underwater communication (UWC) has become an attractive research field over the past few decades. This is mainly due to the increase in underwater applications such as exploration, monitoring, and warning systems. Traditional communications techniques face many obstacles when used underwater. Optical communications require line of sight which is not always maintained underwater due to turbulence. Acoustic communication does not suffer from that, however, it can only operate with very low rates. While radio frequency (RF) communication can only operate over short distances due to the attenuation from the water, it can deliver relatively high data rates and does not require line of sight nor affected by turbulence. Additionally, it does not suffer much when crossing the air–water boundaries. Moreover, underwater nodes require a new method of powering as it is not feasible to change their batteries when they are depleted. And so, we have investigated underwater solar power harvesters as a means to power the underwater nodes. In this paper, we design, implement, integrate, and test a low cost solar powered RF underwater modem to be used as a building block of an underwater wireless sensor network. The system was tested with multiple nodes to allow multi-hop communications in order to increase the communication distance. Results show that the network operates with a moderate to high throughput from end to end.\",\"PeriodicalId\":45623,\"journal\":{\"name\":\"International Journal on Smart Sensing and Intelligent Systems\",\"volume\":\"13 1\",\"pages\":\"1 - 11\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Smart Sensing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21307/ijssis-2020-015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/ijssis-2020-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 8

摘要

摘要在过去的几十年里,水下通信已经成为一个有吸引力的研究领域。这主要是由于水下应用的增加,如勘探、监测和预警系统。传统的通信技术在水下使用时面临许多障碍。光通信需要视线,由于湍流,视线并不总是保持在水下。声学通信不会受到这种影响,然而,它只能以非常低的速率运行。虽然由于来自水中的衰减,射频(RF)通信只能在短距离内运行,但它可以提供相对较高的数据速率,不需要视线,也不受湍流的影响。此外,它在穿越空气-水边界时不会受到太大影响。此外,水下节点需要一种新的供电方法,因为当电池耗尽时更换电池是不可行的。因此,我们研究了水下太阳能采集器作为水下节点供电的一种方式。在本文中,我们设计、实现、集成和测试了一种低成本的太阳能射频水下调制解调器,该调制解调器将用作水下无线传感器网络的构建块。该系统使用多个节点进行了测试,以允许多跳通信,从而增加通信距离。结果表明,该网络从端到端以中等到高吞吐量运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of a low cost, solar charged RF modem for underwater wireless sensor networks
Abstract Underwater communication (UWC) has become an attractive research field over the past few decades. This is mainly due to the increase in underwater applications such as exploration, monitoring, and warning systems. Traditional communications techniques face many obstacles when used underwater. Optical communications require line of sight which is not always maintained underwater due to turbulence. Acoustic communication does not suffer from that, however, it can only operate with very low rates. While radio frequency (RF) communication can only operate over short distances due to the attenuation from the water, it can deliver relatively high data rates and does not require line of sight nor affected by turbulence. Additionally, it does not suffer much when crossing the air–water boundaries. Moreover, underwater nodes require a new method of powering as it is not feasible to change their batteries when they are depleted. And so, we have investigated underwater solar power harvesters as a means to power the underwater nodes. In this paper, we design, implement, integrate, and test a low cost solar powered RF underwater modem to be used as a building block of an underwater wireless sensor network. The system was tested with multiple nodes to allow multi-hop communications in order to increase the communication distance. Results show that the network operates with a moderate to high throughput from end to end.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
8.30%
发文量
15
审稿时长
8 weeks
期刊介绍: nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity
期刊最新文献
Performance Comparison of Statistical vs. Neural-Based Translation System on Low-Resource Languages Backpack detection model using multi-scale superpixel and body-part segmentation Study of structural and morphological properties of RF-sputtered SnO2 thin films and their effect on gas-sensing phenomenon Biometric authentication sensor with an encryption module for prevention of h/w hacking in digital custody services Multiple Sensor based Human Detection Robots: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1