Lin Zhang, Jianjun Zhang, Quan Zheng, Ying Xu, Xinli Kou, Tao Li
{"title":"快速加热-冷却工艺制备金空心球","authors":"Lin Zhang, Jianjun Zhang, Quan Zheng, Ying Xu, Xinli Kou, Tao Li","doi":"10.1007/s13404-022-00311-1","DOIUrl":null,"url":null,"abstract":"<div><p>Although gold hollow spheres show unique advantages in fields like catalysis, the available synthesis strategies have low atom and economic efficiency. In this paper, Au hollow spheres were produced by combining simple wet chemical method and rapid heating–cooling process, in which rapid temperature rise caused Au evaporation and rapid cooling froze gold “bubbles.” The control experiments confirmed the presence of supports which limit the growth and sintering of Au nanoparticles to some extent, and slower heating rate inhibits the hollowing of gold sphere. This work provides a new strategy for the rapid and facile synthesis of Au hollow spheres, offering a wide range of possibilities for energy storage and biosensing applications.</p></div>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Formation of gold hollow spheres by rapid heating–cooling process\",\"authors\":\"Lin Zhang, Jianjun Zhang, Quan Zheng, Ying Xu, Xinli Kou, Tao Li\",\"doi\":\"10.1007/s13404-022-00311-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although gold hollow spheres show unique advantages in fields like catalysis, the available synthesis strategies have low atom and economic efficiency. In this paper, Au hollow spheres were produced by combining simple wet chemical method and rapid heating–cooling process, in which rapid temperature rise caused Au evaporation and rapid cooling froze gold “bubbles.” The control experiments confirmed the presence of supports which limit the growth and sintering of Au nanoparticles to some extent, and slower heating rate inhibits the hollowing of gold sphere. This work provides a new strategy for the rapid and facile synthesis of Au hollow spheres, offering a wide range of possibilities for energy storage and biosensing applications.</p></div>\",\"PeriodicalId\":55086,\"journal\":{\"name\":\"Gold Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gold Bulletin\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13404-022-00311-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-022-00311-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Formation of gold hollow spheres by rapid heating–cooling process
Although gold hollow spheres show unique advantages in fields like catalysis, the available synthesis strategies have low atom and economic efficiency. In this paper, Au hollow spheres were produced by combining simple wet chemical method and rapid heating–cooling process, in which rapid temperature rise caused Au evaporation and rapid cooling froze gold “bubbles.” The control experiments confirmed the presence of supports which limit the growth and sintering of Au nanoparticles to some extent, and slower heating rate inhibits the hollowing of gold sphere. This work provides a new strategy for the rapid and facile synthesis of Au hollow spheres, offering a wide range of possibilities for energy storage and biosensing applications.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.