新烟碱类物质对非靶生物的毒性作用研究进展

Q4 Pharmacology, Toxicology and Pharmaceutics Toxicology International Pub Date : 2023-03-20 DOI:10.18311/ti/2023/v30i1/30246
Leena Khurana, P. Chaturvedi, C. Sharma, P. Bhatnagar, Nidhi Gupta
{"title":"新烟碱类物质对非靶生物的毒性作用研究进展","authors":"Leena Khurana, P. Chaturvedi, C. Sharma, P. Bhatnagar, Nidhi Gupta","doi":"10.18311/ti/2023/v30i1/30246","DOIUrl":null,"url":null,"abstract":"The neonicotinoid class of insecticide is nicotine-like neuro-toxicants used to control the pests of agriculture crops and ornamental plants. They act as selective agonists of acetylcholine receptors in the central nervous system of insect pests and work by disrupting their nerve impulses. Some of the properties of this class of insecticides are a long half-life in soil, low volatility, and higher water solubility, leading to their accumulation in soil, underground water, and water bodies due to surface runoff. This, in turn, results in exposure to many beneficial non-target aquatic and soil fauna such as arthropods, fish, birds, mammals, etc. Although it has a selective mode of action for insects, some in vivo and in vitro investigations have also shown toxicity in non-target invertebrates and vertebrates. Initially, neonicotinoid toxicity was observed in honey bees, which are essential pollinators of crops. Later, studies reported the accumulation of neonicotinoid residues leading to the mortality of aquatic fauna, including salt marsh and freshwater mosquitoes, brine shrimp, fleas, and crayfish. Imidacloprid exposure led to disruption of larval development in the Mayfly larvae. Also, earthworms that play a crucial role in enhancing soil fertility were drastically affected by acetamiprid, clothianidin, imidacloprid, nitenpyram, and thiacloprid. Apart from these, toxicological impacts were also observed in vertebrates such as birds, where imidacloprid, clothianidin, acetamiprid, and thiacloprid caused reproductive, metabolic, and morphological alterations. Similarly, imidacloprid and acetamiprid caused gills, brain and liver dysfunction with embryo mortality. Even after the selective action of neonicotinoids, instances of mammalian toxicity were also reported in many in vivo studies. DNA damage and liver dysfunctions due to imidacloprid in rabbits were observed in various studies. In a recent study, imidacloprid exposure led to DNA damage and oxidative stress in bone marrow-derived mesenchymal cells of buffalo. Also, many instances of neurotoxicity, reproductive toxicity, immunotoxicity, genotoxicity and cytotoxicity in mouse and rat models were observed due to different neonicotinoids. Many in vitro studies using mammalian cell lines have also established potential risks of neonicotinoid exposure. This review, therefore, is a compilation of various toxicity studies of different types of neonicotinoid pesticides in both nontarget invertebrates and vertebrates, including several kinds of toxicities caused in mammals with neonicotinoid exposure.","PeriodicalId":23205,"journal":{"name":"Toxicology International","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxic Effects Associated With Neonicotinoid Exposure on Non-target Organisms: A Review\",\"authors\":\"Leena Khurana, P. Chaturvedi, C. Sharma, P. Bhatnagar, Nidhi Gupta\",\"doi\":\"10.18311/ti/2023/v30i1/30246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neonicotinoid class of insecticide is nicotine-like neuro-toxicants used to control the pests of agriculture crops and ornamental plants. They act as selective agonists of acetylcholine receptors in the central nervous system of insect pests and work by disrupting their nerve impulses. Some of the properties of this class of insecticides are a long half-life in soil, low volatility, and higher water solubility, leading to their accumulation in soil, underground water, and water bodies due to surface runoff. This, in turn, results in exposure to many beneficial non-target aquatic and soil fauna such as arthropods, fish, birds, mammals, etc. Although it has a selective mode of action for insects, some in vivo and in vitro investigations have also shown toxicity in non-target invertebrates and vertebrates. Initially, neonicotinoid toxicity was observed in honey bees, which are essential pollinators of crops. Later, studies reported the accumulation of neonicotinoid residues leading to the mortality of aquatic fauna, including salt marsh and freshwater mosquitoes, brine shrimp, fleas, and crayfish. Imidacloprid exposure led to disruption of larval development in the Mayfly larvae. Also, earthworms that play a crucial role in enhancing soil fertility were drastically affected by acetamiprid, clothianidin, imidacloprid, nitenpyram, and thiacloprid. Apart from these, toxicological impacts were also observed in vertebrates such as birds, where imidacloprid, clothianidin, acetamiprid, and thiacloprid caused reproductive, metabolic, and morphological alterations. Similarly, imidacloprid and acetamiprid caused gills, brain and liver dysfunction with embryo mortality. Even after the selective action of neonicotinoids, instances of mammalian toxicity were also reported in many in vivo studies. DNA damage and liver dysfunctions due to imidacloprid in rabbits were observed in various studies. In a recent study, imidacloprid exposure led to DNA damage and oxidative stress in bone marrow-derived mesenchymal cells of buffalo. Also, many instances of neurotoxicity, reproductive toxicity, immunotoxicity, genotoxicity and cytotoxicity in mouse and rat models were observed due to different neonicotinoids. Many in vitro studies using mammalian cell lines have also established potential risks of neonicotinoid exposure. This review, therefore, is a compilation of various toxicity studies of different types of neonicotinoid pesticides in both nontarget invertebrates and vertebrates, including several kinds of toxicities caused in mammals with neonicotinoid exposure.\",\"PeriodicalId\":23205,\"journal\":{\"name\":\"Toxicology International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/ti/2023/v30i1/30246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/ti/2023/v30i1/30246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

新烟碱类杀虫剂是一种类似尼古丁的神经毒剂,用于控制农作物和观赏植物的害虫。它们在害虫的中枢神经系统中充当乙酰胆碱受体的选择性激动剂,通过破坏它们的神经冲动发挥作用。这类杀虫剂的一些特性是在土壤中半衰期长、挥发性低、水溶性高,导致它们因地表径流而在土壤、地下水和水体中积累。这反过来又导致接触许多有益的非目标水生和土壤动物,如节肢动物、鱼类、鸟类、哺乳动物等。尽管它对昆虫有选择性的作用模式,但一些体内和体外研究也表明对非目标无脊椎动物和脊椎动物有毒性。最初,在蜜蜂身上观察到新烟碱类毒性,蜜蜂是作物的重要传粉昆虫。后来,研究报告称,新烟碱类残留物的积累导致水生动物的死亡,包括盐沼和淡水蚊子、卤虾、跳蚤和小龙虾。吡虫啉暴露导致果蝇幼虫发育中断。此外,在提高土壤肥力方面发挥关键作用的蚯蚓也受到啶虫脒、噻虫胺、吡虫啉、烯啶虫胺和噻虫脒的严重影响。除此之外,在鸟类等脊椎动物中也观察到了毒理学影响,吡虫啉、噻虫胺、啶虫脒和噻虫脒会导致生殖、代谢和形态改变。同样,吡虫啉和啶虫脒会导致鳃、脑和肝功能障碍,并导致胚胎死亡。即使在新烟碱类药物的选择性作用之后,在许多体内研究中也报道了哺乳动物毒性的例子。在各种研究中观察到吡虫啉对家兔的DNA损伤和肝脏功能障碍。在最近的一项研究中,吡虫啉暴露导致水牛骨髓间充质细胞的DNA损伤和氧化应激。此外,由于不同的新烟碱类化合物,在小鼠和大鼠模型中观察到许多神经毒性、生殖毒性、免疫毒性、遗传毒性和细胞毒性。许多使用哺乳动物细胞系的体外研究也确定了新烟碱类暴露的潜在风险。因此,本综述汇集了不同类型新烟碱类农药对非目标无脊椎动物和脊椎动物的各种毒性研究,包括对接触新烟碱类杀虫剂的哺乳动物造成的几种毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toxic Effects Associated With Neonicotinoid Exposure on Non-target Organisms: A Review
The neonicotinoid class of insecticide is nicotine-like neuro-toxicants used to control the pests of agriculture crops and ornamental plants. They act as selective agonists of acetylcholine receptors in the central nervous system of insect pests and work by disrupting their nerve impulses. Some of the properties of this class of insecticides are a long half-life in soil, low volatility, and higher water solubility, leading to their accumulation in soil, underground water, and water bodies due to surface runoff. This, in turn, results in exposure to many beneficial non-target aquatic and soil fauna such as arthropods, fish, birds, mammals, etc. Although it has a selective mode of action for insects, some in vivo and in vitro investigations have also shown toxicity in non-target invertebrates and vertebrates. Initially, neonicotinoid toxicity was observed in honey bees, which are essential pollinators of crops. Later, studies reported the accumulation of neonicotinoid residues leading to the mortality of aquatic fauna, including salt marsh and freshwater mosquitoes, brine shrimp, fleas, and crayfish. Imidacloprid exposure led to disruption of larval development in the Mayfly larvae. Also, earthworms that play a crucial role in enhancing soil fertility were drastically affected by acetamiprid, clothianidin, imidacloprid, nitenpyram, and thiacloprid. Apart from these, toxicological impacts were also observed in vertebrates such as birds, where imidacloprid, clothianidin, acetamiprid, and thiacloprid caused reproductive, metabolic, and morphological alterations. Similarly, imidacloprid and acetamiprid caused gills, brain and liver dysfunction with embryo mortality. Even after the selective action of neonicotinoids, instances of mammalian toxicity were also reported in many in vivo studies. DNA damage and liver dysfunctions due to imidacloprid in rabbits were observed in various studies. In a recent study, imidacloprid exposure led to DNA damage and oxidative stress in bone marrow-derived mesenchymal cells of buffalo. Also, many instances of neurotoxicity, reproductive toxicity, immunotoxicity, genotoxicity and cytotoxicity in mouse and rat models were observed due to different neonicotinoids. Many in vitro studies using mammalian cell lines have also established potential risks of neonicotinoid exposure. This review, therefore, is a compilation of various toxicity studies of different types of neonicotinoid pesticides in both nontarget invertebrates and vertebrates, including several kinds of toxicities caused in mammals with neonicotinoid exposure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology International
Toxicology International Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
0.60
自引率
0.00%
发文量
23
期刊介绍: Toxicology International is a peer-reviewed International Research Journal published bi-annually by the Society of Toxicology, India. The Journal is concerned with various disciplines of Toxicology including man, animals, plants and environment and publishes research, review and general articles besides opinions, comments, news-highlights and letters to editor.
期刊最新文献
Toxicological Impact of Nanoparticles on Reproductive System: A Review Studies on Histopathological Alterations in the Brain and Gill, of Cyprinus carpio Exposed to the Insecticide Afidopyropen Green Synthesis of Stable and Reusable Zinc Nanoparticle Adsorbents for the Removal of Carcinogenic Heavy Metals in Aqueous Solution Assessment of Anti-Carcinogenic Potential of Neem (Azadirachta indica) Leaf Extract Loaded Calcium Phosphate Nanoparticles against Experimentally Induced Mammary Carcinogenesis in Rats Role of Phytochemicals against Diabetic Nephropathy: An Insight into Molecular Receptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1