Shao-di Yang, Fan Zhang, Zhen Yang, Xiaoyu Yang, Shuzhou Li
{"title":"腹部CT三维多期图像的粗到细配准","authors":"Shao-di Yang, Fan Zhang, Zhen Yang, Xiaoyu Yang, Shuzhou Li","doi":"10.1166/NNL.2020.3194","DOIUrl":null,"url":null,"abstract":"Registration is a technical support for the integration of nanomaterial imaging-aided diagnosis and treatment. In this paper, a coarse-to-fine three-dimensional (3D) multi-phase abdominal CT images registration method is proposed. Firstly, a linear model is used to coarsely register\n the paired multiphase images. Secondly, an intensity-based registration framework is proposed, which contains the data and spatial regularization terms and performs fine registration on the paired images obtained in the coarse registration step. The results illustrate that the proposed method\n is superior to some existing methods with the average MSE, PSNR, and SSIM values of 0.0082, 21.2695, and 0.8956, respectively. Therefore, the proposed method provides an efficient and robust framework for 3D multi-phase abdominal CT images registration.","PeriodicalId":18871,"journal":{"name":"Nanoscience and Nanotechnology Letters","volume":"12 1","pages":"909-914"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Coarse-to-Fine Registration on 3D Multi-Phase Abdominal CT Images\",\"authors\":\"Shao-di Yang, Fan Zhang, Zhen Yang, Xiaoyu Yang, Shuzhou Li\",\"doi\":\"10.1166/NNL.2020.3194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Registration is a technical support for the integration of nanomaterial imaging-aided diagnosis and treatment. In this paper, a coarse-to-fine three-dimensional (3D) multi-phase abdominal CT images registration method is proposed. Firstly, a linear model is used to coarsely register\\n the paired multiphase images. Secondly, an intensity-based registration framework is proposed, which contains the data and spatial regularization terms and performs fine registration on the paired images obtained in the coarse registration step. The results illustrate that the proposed method\\n is superior to some existing methods with the average MSE, PSNR, and SSIM values of 0.0082, 21.2695, and 0.8956, respectively. Therefore, the proposed method provides an efficient and robust framework for 3D multi-phase abdominal CT images registration.\",\"PeriodicalId\":18871,\"journal\":{\"name\":\"Nanoscience and Nanotechnology Letters\",\"volume\":\"12 1\",\"pages\":\"909-914\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/NNL.2020.3194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/NNL.2020.3194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Coarse-to-Fine Registration on 3D Multi-Phase Abdominal CT Images
Registration is a technical support for the integration of nanomaterial imaging-aided diagnosis and treatment. In this paper, a coarse-to-fine three-dimensional (3D) multi-phase abdominal CT images registration method is proposed. Firstly, a linear model is used to coarsely register
the paired multiphase images. Secondly, an intensity-based registration framework is proposed, which contains the data and spatial regularization terms and performs fine registration on the paired images obtained in the coarse registration step. The results illustrate that the proposed method
is superior to some existing methods with the average MSE, PSNR, and SSIM values of 0.0082, 21.2695, and 0.8956, respectively. Therefore, the proposed method provides an efficient and robust framework for 3D multi-phase abdominal CT images registration.