A.S.M. Mohaiminul Islam , Mohammadali Shirazi , Dominique Lord
{"title":"分组随机参数负二项Lindley用于解释具有优势零观测的碰撞数据中未观测到的异质性","authors":"A.S.M. Mohaiminul Islam , Mohammadali Shirazi , Dominique Lord","doi":"10.1016/j.amar.2022.100255","DOIUrl":null,"url":null,"abstract":"<div><p>Developing robust and reliable statistical models to estimate, analyze, and understand crash data is a key element in various highway safety evaluation tasks. Crash data have characteristics not found in other data, including but not limited to the excess number of zero responses. The Negative Binomial-Lindley (NB-L) model has been proposed as a method to analyze data with many zero observations. In addition, the differences in various temporal and spatial factors result in variations of model coefficients among different groups of observations. A grouped random parameters model is a strategy to account for such unobserved heterogeneity. In this paper, we proposed the derivations and applications of the grouped random parameters negative binomial-Lindley model (G-RPNB-L) to account for the unobserved heterogeneity in crash data with many zero observations. We first illustrated our proposed model by designing a simulation study. The simulation study showed the ability of the proposed model to correctly estimate the coefficients. Then, we used an empirical dataset in Maine to show the application of the proposed model. We showed that the impact of weather variables denoting “Days with precipitation greater than 1.0 in.”, and “Days with temperature less than 32°F” varies across Maine counties. We also compared the proposed model with the NB, NB-L, and grouped random-parameters NB (G-RPNB) models using different goodness-of-fit metrics. The proposed G-RPNB-L model showed a superior fit compared to the other models.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"37 ","pages":"Article 100255"},"PeriodicalIF":12.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Grouped Random Parameters Negative Binomial-Lindley for accounting unobserved heterogeneity in crash data with preponderant zero observations\",\"authors\":\"A.S.M. Mohaiminul Islam , Mohammadali Shirazi , Dominique Lord\",\"doi\":\"10.1016/j.amar.2022.100255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing robust and reliable statistical models to estimate, analyze, and understand crash data is a key element in various highway safety evaluation tasks. Crash data have characteristics not found in other data, including but not limited to the excess number of zero responses. The Negative Binomial-Lindley (NB-L) model has been proposed as a method to analyze data with many zero observations. In addition, the differences in various temporal and spatial factors result in variations of model coefficients among different groups of observations. A grouped random parameters model is a strategy to account for such unobserved heterogeneity. In this paper, we proposed the derivations and applications of the grouped random parameters negative binomial-Lindley model (G-RPNB-L) to account for the unobserved heterogeneity in crash data with many zero observations. We first illustrated our proposed model by designing a simulation study. The simulation study showed the ability of the proposed model to correctly estimate the coefficients. Then, we used an empirical dataset in Maine to show the application of the proposed model. We showed that the impact of weather variables denoting “Days with precipitation greater than 1.0 in.”, and “Days with temperature less than 32°F” varies across Maine counties. We also compared the proposed model with the NB, NB-L, and grouped random-parameters NB (G-RPNB) models using different goodness-of-fit metrics. The proposed G-RPNB-L model showed a superior fit compared to the other models.</p></div>\",\"PeriodicalId\":47520,\"journal\":{\"name\":\"Analytic Methods in Accident Research\",\"volume\":\"37 \",\"pages\":\"Article 100255\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic Methods in Accident Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213665722000446\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665722000446","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Grouped Random Parameters Negative Binomial-Lindley for accounting unobserved heterogeneity in crash data with preponderant zero observations
Developing robust and reliable statistical models to estimate, analyze, and understand crash data is a key element in various highway safety evaluation tasks. Crash data have characteristics not found in other data, including but not limited to the excess number of zero responses. The Negative Binomial-Lindley (NB-L) model has been proposed as a method to analyze data with many zero observations. In addition, the differences in various temporal and spatial factors result in variations of model coefficients among different groups of observations. A grouped random parameters model is a strategy to account for such unobserved heterogeneity. In this paper, we proposed the derivations and applications of the grouped random parameters negative binomial-Lindley model (G-RPNB-L) to account for the unobserved heterogeneity in crash data with many zero observations. We first illustrated our proposed model by designing a simulation study. The simulation study showed the ability of the proposed model to correctly estimate the coefficients. Then, we used an empirical dataset in Maine to show the application of the proposed model. We showed that the impact of weather variables denoting “Days with precipitation greater than 1.0 in.”, and “Days with temperature less than 32°F” varies across Maine counties. We also compared the proposed model with the NB, NB-L, and grouped random-parameters NB (G-RPNB) models using different goodness-of-fit metrics. The proposed G-RPNB-L model showed a superior fit compared to the other models.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.