模拟热带风暴艾尔莎:洪水地图模拟使用多感官降水在康涅狄格

IF 1 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Atmosfera Pub Date : 2023-08-01 DOI:10.20937/atm.53234
J. Stella
{"title":"模拟热带风暴艾尔莎:洪水地图模拟使用多感官降水在康涅狄格","authors":"J. Stella","doi":"10.20937/atm.53234","DOIUrl":null,"url":null,"abstract":"A flood map simulation in the Fenton River watershed, Connecticut, was conducted for Tropical Storm Elsa occurred in early July 2021, using Multi Radar Multi Sensor-Quantitative Precipitation Estimation (MRMS-QPE) as input to force the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) to simulate discharges in the mainstream of the watershed. The simulated discharges were calibrated using observed discharges at the Old Turnpike Bridge USGS station, and they were used to force a Hydrologic Engineering Center-River Analysis System (HEC-RAS) 2D model of the Fenton River watershed. The simulated stages were calibrated using observed stages at Old Turnpike Bridge USGS station to simulate flood maps in the mainstream of the watershed. The resulting use of HEC-HMS and HEC-RAS 2D models coupled with MRMS-QPE precipitation shows that these models set up is user-friendly. The model shows stability and the capacity to simulate flood maps along the whole mainstream of the Fenton River with good accuracy.","PeriodicalId":55576,"journal":{"name":"Atmosfera","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling tropical storm Elsa: Flood map simulation using multisensory precipitation in Connecticut\",\"authors\":\"J. Stella\",\"doi\":\"10.20937/atm.53234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A flood map simulation in the Fenton River watershed, Connecticut, was conducted for Tropical Storm Elsa occurred in early July 2021, using Multi Radar Multi Sensor-Quantitative Precipitation Estimation (MRMS-QPE) as input to force the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) to simulate discharges in the mainstream of the watershed. The simulated discharges were calibrated using observed discharges at the Old Turnpike Bridge USGS station, and they were used to force a Hydrologic Engineering Center-River Analysis System (HEC-RAS) 2D model of the Fenton River watershed. The simulated stages were calibrated using observed stages at Old Turnpike Bridge USGS station to simulate flood maps in the mainstream of the watershed. The resulting use of HEC-HMS and HEC-RAS 2D models coupled with MRMS-QPE precipitation shows that these models set up is user-friendly. The model shows stability and the capacity to simulate flood maps along the whole mainstream of the Fenton River with good accuracy.\",\"PeriodicalId\":55576,\"journal\":{\"name\":\"Atmosfera\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosfera\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.20937/atm.53234\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosfera","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.20937/atm.53234","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对2021年7月初发生在康涅狄格州芬顿河流域的热带风暴艾尔莎进行了洪水地图模拟,使用多雷达多传感器定量降水估算(MRMS-QPE)作为输入,迫使水文工程中心-水文建模系统(HEC-HMS)模拟流域主流的流量。模拟的流量使用美国地质勘测局在Old Turnpike Bridge站观测到的流量进行校准,并用于芬顿河流域水文工程中心-河流分析系统(HEC-RAS)的2D模型。模拟阶段是根据美国地质勘探局在老收费公路大桥站观测到的阶段进行校准的,以模拟流域主流的洪水地图。将HEC-HMS和HEC-RAS 2D模型与MRMS-QPE降水相结合的结果表明,这些模型的建立是用户友好的。该模型具有较好的稳定性和较好的模拟芬顿河全干流洪水图的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling tropical storm Elsa: Flood map simulation using multisensory precipitation in Connecticut
A flood map simulation in the Fenton River watershed, Connecticut, was conducted for Tropical Storm Elsa occurred in early July 2021, using Multi Radar Multi Sensor-Quantitative Precipitation Estimation (MRMS-QPE) as input to force the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) to simulate discharges in the mainstream of the watershed. The simulated discharges were calibrated using observed discharges at the Old Turnpike Bridge USGS station, and they were used to force a Hydrologic Engineering Center-River Analysis System (HEC-RAS) 2D model of the Fenton River watershed. The simulated stages were calibrated using observed stages at Old Turnpike Bridge USGS station to simulate flood maps in the mainstream of the watershed. The resulting use of HEC-HMS and HEC-RAS 2D models coupled with MRMS-QPE precipitation shows that these models set up is user-friendly. The model shows stability and the capacity to simulate flood maps along the whole mainstream of the Fenton River with good accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosfera
Atmosfera 地学-气象与大气科学
CiteScore
2.20
自引率
0.00%
发文量
46
审稿时长
6 months
期刊介绍: ATMÓSFERA seeks contributions on theoretical, basic, empirical and applied research in all the areas of atmospheric sciences, with emphasis on meteorology, climatology, aeronomy, physics, chemistry, and aerobiology. Interdisciplinary contributions are also accepted; especially those related with oceanography, hydrology, climate variability and change, ecology, forestry, glaciology, agriculture, environmental pollution, and other topics related to economy and society as they are affected by atmospheric hazards.
期刊最新文献
Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada Development of a CFD model to simulate the dispersion of atmospheric NH3 in a semi-open barn Using a hybrid approach for wind power forecasting in Northwestern Mexico Threats to tropical wetlands: Medio Queso Wetland as a case of degraded system Performance evaluation of the WRF model under different physical schemes for air quality purposes in Buenos Aires, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1