M. Valverde-Alva, Jhenry F. Agreda-Delgado, W. Aldama-Reyna, L. Angelats-Silva, Guillermo Gayoso-Bazán, H. León-León, Fredy Pérez-Azahuanche, Santiago A. Vásquez-García
{"title":"赤木文化纺织品纤维的形态、组成和结构","authors":"M. Valverde-Alva, Jhenry F. Agreda-Delgado, W. Aldama-Reyna, L. Angelats-Silva, Guillermo Gayoso-Bazán, H. León-León, Fredy Pérez-Azahuanche, Santiago A. Vásquez-García","doi":"10.15446/mo.n64.97681","DOIUrl":null,"url":null,"abstract":"In this work we studied the microfibers of a textile (T-shirt) of the Chimú culture. This culture developed on the northern coast of Peru. To determine the raw material and structural quality of the microfibers, the results of the Chimú textile were compared with the corresponding results for the microfibers of cotton from the northern coast of Peru (native cotton). Scanning electron microscopy images revealed that the Chimú textile yarns are composed of a set of interwoven microfibers. Energy dispersive X-ray spectroscopy and pulsed laser-induced plasma spectroscopy techniques allowed the identification of characteristic cellulose atoms in the microfibers of Chimú textile and native cotton. Only for the Chimú textile, these spectroscopic techniques allowed the identification of atoms corresponding to natural dyes and powder residues. Attenuated total reflection Fourier transform infrared spectroscopy identified the same molecular bonds for the microfibers of Chimú textile and native cotton. For the microfibers of Chimú textile and native cotton, the X-ray diffractograms showed peaks characteristic of the cellulose Iβ polymorphism of of monoclinic P21 structure. The raw material of the Chimú textile is cotton and the microfibers of this material show significant structural stability.","PeriodicalId":42463,"journal":{"name":"MOMENTO-Revista de Fisica","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Morphology, composition and structure of the fibers of a Chimu culture textile\",\"authors\":\"M. Valverde-Alva, Jhenry F. Agreda-Delgado, W. Aldama-Reyna, L. Angelats-Silva, Guillermo Gayoso-Bazán, H. León-León, Fredy Pérez-Azahuanche, Santiago A. Vásquez-García\",\"doi\":\"10.15446/mo.n64.97681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we studied the microfibers of a textile (T-shirt) of the Chimú culture. This culture developed on the northern coast of Peru. To determine the raw material and structural quality of the microfibers, the results of the Chimú textile were compared with the corresponding results for the microfibers of cotton from the northern coast of Peru (native cotton). Scanning electron microscopy images revealed that the Chimú textile yarns are composed of a set of interwoven microfibers. Energy dispersive X-ray spectroscopy and pulsed laser-induced plasma spectroscopy techniques allowed the identification of characteristic cellulose atoms in the microfibers of Chimú textile and native cotton. Only for the Chimú textile, these spectroscopic techniques allowed the identification of atoms corresponding to natural dyes and powder residues. Attenuated total reflection Fourier transform infrared spectroscopy identified the same molecular bonds for the microfibers of Chimú textile and native cotton. For the microfibers of Chimú textile and native cotton, the X-ray diffractograms showed peaks characteristic of the cellulose Iβ polymorphism of of monoclinic P21 structure. The raw material of the Chimú textile is cotton and the microfibers of this material show significant structural stability.\",\"PeriodicalId\":42463,\"journal\":{\"name\":\"MOMENTO-Revista de Fisica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MOMENTO-Revista de Fisica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/mo.n64.97681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOMENTO-Revista de Fisica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/mo.n64.97681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Morphology, composition and structure of the fibers of a Chimu culture textile
In this work we studied the microfibers of a textile (T-shirt) of the Chimú culture. This culture developed on the northern coast of Peru. To determine the raw material and structural quality of the microfibers, the results of the Chimú textile were compared with the corresponding results for the microfibers of cotton from the northern coast of Peru (native cotton). Scanning electron microscopy images revealed that the Chimú textile yarns are composed of a set of interwoven microfibers. Energy dispersive X-ray spectroscopy and pulsed laser-induced plasma spectroscopy techniques allowed the identification of characteristic cellulose atoms in the microfibers of Chimú textile and native cotton. Only for the Chimú textile, these spectroscopic techniques allowed the identification of atoms corresponding to natural dyes and powder residues. Attenuated total reflection Fourier transform infrared spectroscopy identified the same molecular bonds for the microfibers of Chimú textile and native cotton. For the microfibers of Chimú textile and native cotton, the X-ray diffractograms showed peaks characteristic of the cellulose Iβ polymorphism of of monoclinic P21 structure. The raw material of the Chimú textile is cotton and the microfibers of this material show significant structural stability.