扩展威布尔几何分布的贝叶斯分析

Pub Date : 2019-11-14 DOI:10.13052/jrss2229-5666.12210
Azeem Ali, Sajid Ali, Shama Khaliq
{"title":"扩展威布尔几何分布的贝叶斯分析","authors":"Azeem Ali, Sajid Ali, Shama Khaliq","doi":"10.13052/jrss2229-5666.12210","DOIUrl":null,"url":null,"abstract":"The paper deals with the Bayes estimation of Extended Weibull-Geometric (EWG) distribution. In particular, we discuss Bayes estimators and their posterior risks using the noninformative and informative priors under different loss functions. Since the posterior summaries cannot be obtained analytically, we adopt Markov Chain Monte Carlo (MCMC) technique to assess the performance of Bayes estimates for different sample sizes. A real life example is also part of this study. \n ","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ON THE BAYESIAN ANALYSIS OF EXTENDED WEIBULL-GEOMETRIC DISTRIBUTION\",\"authors\":\"Azeem Ali, Sajid Ali, Shama Khaliq\",\"doi\":\"10.13052/jrss2229-5666.12210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the Bayes estimation of Extended Weibull-Geometric (EWG) distribution. In particular, we discuss Bayes estimators and their posterior risks using the noninformative and informative priors under different loss functions. Since the posterior summaries cannot be obtained analytically, we adopt Markov Chain Monte Carlo (MCMC) technique to assess the performance of Bayes estimates for different sample sizes. A real life example is also part of this study. \\n \",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jrss2229-5666.12210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss2229-5666.12210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了扩展威布尔几何分布的Bayes估计。特别地,我们使用不同损失函数下的非形成性和信息性先验讨论了贝叶斯估计及其后验风险。由于后验摘要无法通过分析获得,我们采用马尔可夫链蒙特卡罗(MCMC)技术来评估不同样本量的贝叶斯估计的性能。一个现实生活中的例子也是这项研究的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
ON THE BAYESIAN ANALYSIS OF EXTENDED WEIBULL-GEOMETRIC DISTRIBUTION
The paper deals with the Bayes estimation of Extended Weibull-Geometric (EWG) distribution. In particular, we discuss Bayes estimators and their posterior risks using the noninformative and informative priors under different loss functions. Since the posterior summaries cannot be obtained analytically, we adopt Markov Chain Monte Carlo (MCMC) technique to assess the performance of Bayes estimates for different sample sizes. A real life example is also part of this study.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1