Ihar Yelkin, Edward Reszke, Grzegorz Binkiewicz, G. Schroeder
{"title":"用于吸收气体的水的工业生产","authors":"Ihar Yelkin, Edward Reszke, Grzegorz Binkiewicz, G. Schroeder","doi":"10.4236/jwarp.2021.138034","DOIUrl":null,"url":null,"abstract":"The paper presents a flow plasma reactor permitting modification of the properties of water/aqueous solutions by stochastic resonance amplification of vibrations of selected chemical species in water with electromagnetic noise generated during a plasma discharge. The main parameters characterizing the quality for super-pure water, tap water and water from the intake in Besko (Poland) before and after the process in the plasma reactor were presented for comparison. In addition, the 17O NMR (the full width at half maximum) and electrospray ionization mass spectrometry (ESI MS) methods were used to determine differences in physicochemical parameters between the untreated and plasma-treated water. It has been established that the water subjected to plasma treatment shows much different gas absorption properties than the untreated water samples, as a function of temperature and pressure, in this paper we report exemplary data for CO2, oxygen and acetylene. The improved gas absorption properties of the plasma-treated water make it attractive for the use in industrial processes. It is worth pointing to a great capacity of the new reactor (4000 l/h), and low energy consumption (20 MJ/h) for the treatment of the above mentioned volume flow rate of water.","PeriodicalId":56705,"journal":{"name":"水资源与保护(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Industrial Production of Water Dedicated to Absorption of Gases\",\"authors\":\"Ihar Yelkin, Edward Reszke, Grzegorz Binkiewicz, G. Schroeder\",\"doi\":\"10.4236/jwarp.2021.138034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a flow plasma reactor permitting modification of the properties of water/aqueous solutions by stochastic resonance amplification of vibrations of selected chemical species in water with electromagnetic noise generated during a plasma discharge. The main parameters characterizing the quality for super-pure water, tap water and water from the intake in Besko (Poland) before and after the process in the plasma reactor were presented for comparison. In addition, the 17O NMR (the full width at half maximum) and electrospray ionization mass spectrometry (ESI MS) methods were used to determine differences in physicochemical parameters between the untreated and plasma-treated water. It has been established that the water subjected to plasma treatment shows much different gas absorption properties than the untreated water samples, as a function of temperature and pressure, in this paper we report exemplary data for CO2, oxygen and acetylene. The improved gas absorption properties of the plasma-treated water make it attractive for the use in industrial processes. It is worth pointing to a great capacity of the new reactor (4000 l/h), and low energy consumption (20 MJ/h) for the treatment of the above mentioned volume flow rate of water.\",\"PeriodicalId\":56705,\"journal\":{\"name\":\"水资源与保护(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"水资源与保护(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/jwarp.2021.138034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"水资源与保护(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/jwarp.2021.138034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Industrial Production of Water Dedicated to Absorption of Gases
The paper presents a flow plasma reactor permitting modification of the properties of water/aqueous solutions by stochastic resonance amplification of vibrations of selected chemical species in water with electromagnetic noise generated during a plasma discharge. The main parameters characterizing the quality for super-pure water, tap water and water from the intake in Besko (Poland) before and after the process in the plasma reactor were presented for comparison. In addition, the 17O NMR (the full width at half maximum) and electrospray ionization mass spectrometry (ESI MS) methods were used to determine differences in physicochemical parameters between the untreated and plasma-treated water. It has been established that the water subjected to plasma treatment shows much different gas absorption properties than the untreated water samples, as a function of temperature and pressure, in this paper we report exemplary data for CO2, oxygen and acetylene. The improved gas absorption properties of the plasma-treated water make it attractive for the use in industrial processes. It is worth pointing to a great capacity of the new reactor (4000 l/h), and low energy consumption (20 MJ/h) for the treatment of the above mentioned volume flow rate of water.