Sayan Bandyapadhyay, F. Fomin, P. Golovach, Kirill Simonov
{"title":"范畴数据聚类特征选择的参数化复杂性","authors":"Sayan Bandyapadhyay, F. Fomin, P. Golovach, Kirill Simonov","doi":"10.1145/3604797","DOIUrl":null,"url":null,"abstract":"We develop new algorithmic methods with provable guarantees for feature selection in regard to categorical data clustering. While feature selection is one of the most common approaches to reduce dimensionality in practice, most of the known feature selection methods are heuristics. We study the following mathematical model. We assume that there are some inadvertent (or undesirable) features of the input data that unnecessarily increase the cost of clustering. Consequently, we want to select a subset of the original features from the data such that there is a small-cost clustering on the selected features. More precisely, for given integers ℓ (the number of irrelevant features) and k (the number of clusters), budget B, and a set of n categorical data points (represented by m-dimensional vectors whose elements belong to a finite set of values Σ), we want to select m − ℓ relevant features such that the cost of any optimal k-clustering on these features does not exceed B. Here the cost of a cluster is the sum of Hamming distances (ℓ0-distances) between the selected features of the elements of the cluster and its center. The clustering cost is the total sum of the costs of the clusters. We use the framework of parameterized complexity to identify how the complexity of the problem depends on parameters k, B, and |Σ|. Our main result is an algorithm that solves the Feature Selection problem in time f(k, B, |Σ|) · mg(k, |Σ|) · n2 for some functions f and g. In other words, the problem is fixed-parameter tractable parameterized by B when |Σ| and k are constants. Our algorithm for Feature Selection is based on a solution to a more general problem, Constrained Clustering with Outliers. In this problem, we want to delete a certain number of outliers such that the remaining points could be clustered around centers satisfying specific constraints. One interesting fact about Constrained Clustering with Outliers is that besides Feature Selection, it encompasses many other fundamental problems regarding categorical data such as Robust Clustering, and Binary and Boolean Low-rank Matrix Approximation with Outliers. Thus as a byproduct of our theorem, we obtain algorithms for all these problems. We also complement our algorithmic findings with complexity lower bounds.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parameterized Complexity of Feature Selection for Categorical Data Clustering\",\"authors\":\"Sayan Bandyapadhyay, F. Fomin, P. Golovach, Kirill Simonov\",\"doi\":\"10.1145/3604797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop new algorithmic methods with provable guarantees for feature selection in regard to categorical data clustering. While feature selection is one of the most common approaches to reduce dimensionality in practice, most of the known feature selection methods are heuristics. We study the following mathematical model. We assume that there are some inadvertent (or undesirable) features of the input data that unnecessarily increase the cost of clustering. Consequently, we want to select a subset of the original features from the data such that there is a small-cost clustering on the selected features. More precisely, for given integers ℓ (the number of irrelevant features) and k (the number of clusters), budget B, and a set of n categorical data points (represented by m-dimensional vectors whose elements belong to a finite set of values Σ), we want to select m − ℓ relevant features such that the cost of any optimal k-clustering on these features does not exceed B. Here the cost of a cluster is the sum of Hamming distances (ℓ0-distances) between the selected features of the elements of the cluster and its center. The clustering cost is the total sum of the costs of the clusters. We use the framework of parameterized complexity to identify how the complexity of the problem depends on parameters k, B, and |Σ|. Our main result is an algorithm that solves the Feature Selection problem in time f(k, B, |Σ|) · mg(k, |Σ|) · n2 for some functions f and g. In other words, the problem is fixed-parameter tractable parameterized by B when |Σ| and k are constants. Our algorithm for Feature Selection is based on a solution to a more general problem, Constrained Clustering with Outliers. In this problem, we want to delete a certain number of outliers such that the remaining points could be clustered around centers satisfying specific constraints. One interesting fact about Constrained Clustering with Outliers is that besides Feature Selection, it encompasses many other fundamental problems regarding categorical data such as Robust Clustering, and Binary and Boolean Low-rank Matrix Approximation with Outliers. Thus as a byproduct of our theorem, we obtain algorithms for all these problems. We also complement our algorithmic findings with complexity lower bounds.\",\"PeriodicalId\":44045,\"journal\":{\"name\":\"ACM Transactions on Computation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3604797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Parameterized Complexity of Feature Selection for Categorical Data Clustering
We develop new algorithmic methods with provable guarantees for feature selection in regard to categorical data clustering. While feature selection is one of the most common approaches to reduce dimensionality in practice, most of the known feature selection methods are heuristics. We study the following mathematical model. We assume that there are some inadvertent (or undesirable) features of the input data that unnecessarily increase the cost of clustering. Consequently, we want to select a subset of the original features from the data such that there is a small-cost clustering on the selected features. More precisely, for given integers ℓ (the number of irrelevant features) and k (the number of clusters), budget B, and a set of n categorical data points (represented by m-dimensional vectors whose elements belong to a finite set of values Σ), we want to select m − ℓ relevant features such that the cost of any optimal k-clustering on these features does not exceed B. Here the cost of a cluster is the sum of Hamming distances (ℓ0-distances) between the selected features of the elements of the cluster and its center. The clustering cost is the total sum of the costs of the clusters. We use the framework of parameterized complexity to identify how the complexity of the problem depends on parameters k, B, and |Σ|. Our main result is an algorithm that solves the Feature Selection problem in time f(k, B, |Σ|) · mg(k, |Σ|) · n2 for some functions f and g. In other words, the problem is fixed-parameter tractable parameterized by B when |Σ| and k are constants. Our algorithm for Feature Selection is based on a solution to a more general problem, Constrained Clustering with Outliers. In this problem, we want to delete a certain number of outliers such that the remaining points could be clustered around centers satisfying specific constraints. One interesting fact about Constrained Clustering with Outliers is that besides Feature Selection, it encompasses many other fundamental problems regarding categorical data such as Robust Clustering, and Binary and Boolean Low-rank Matrix Approximation with Outliers. Thus as a byproduct of our theorem, we obtain algorithms for all these problems. We also complement our algorithmic findings with complexity lower bounds.