{"title":"京尼平苷通过调控PPARγ/VEGF-A通路抑制非小细胞肺癌细胞迁移和血管生成","authors":"Ming Jiang, S. Zheng","doi":"10.15586/qas.v14i1.1016","DOIUrl":null,"url":null,"abstract":"Geniposide, an iridoid glycoside derived from traditional Chinese herb, Gardenia jasminoides Ellis, exerts antitumor effect against distinct cancers. The role of geniposide in the migration and angiogenesis of non-small cell lung cancer (NSCLC) cell was investigated in this study. Cancer cells were incubated with various concentrations of geniposide, and proliferative ability was detected by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) staining. Wound healing and transwell were used to assess cell migration and invasion, respectively. Tube formation assay was performed to investigate angiogenesis. Geniposide reduced NSCLC cell proliferation, and suppressed NSCLC cell migration and invasion in a dosage-dependent manner. Angiogenesis of NSCLC was also inhibited by geniposide. Geniposide increased the protein expression of peroxisome proliferator-activated receptor gamma (PPARγ) and decreased vascular endothelial growth factor-A (VEGF-A) protein expression in NSCLC cells. Incubation with a PPARγ antagonist, GW9662, attenuated geniposide-induced up-regulation of PPARγ and down-regulation of VEGF-A. Over-expression of VEGF-A weakened geniposide-suppressed cell proliferation, migration, and angiogenesis of NSCLC. Geniposide exerted antitumor and anti-angiogenic actions on NSCLC through regulation of PPARγ/VEGF-A pathway.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geniposide inhibits non-small cell lung cancer cell migration and angiogenesis by regulating PPARγ/VEGF-A pathway\",\"authors\":\"Ming Jiang, S. Zheng\",\"doi\":\"10.15586/qas.v14i1.1016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geniposide, an iridoid glycoside derived from traditional Chinese herb, Gardenia jasminoides Ellis, exerts antitumor effect against distinct cancers. The role of geniposide in the migration and angiogenesis of non-small cell lung cancer (NSCLC) cell was investigated in this study. Cancer cells were incubated with various concentrations of geniposide, and proliferative ability was detected by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) staining. Wound healing and transwell were used to assess cell migration and invasion, respectively. Tube formation assay was performed to investigate angiogenesis. Geniposide reduced NSCLC cell proliferation, and suppressed NSCLC cell migration and invasion in a dosage-dependent manner. Angiogenesis of NSCLC was also inhibited by geniposide. Geniposide increased the protein expression of peroxisome proliferator-activated receptor gamma (PPARγ) and decreased vascular endothelial growth factor-A (VEGF-A) protein expression in NSCLC cells. Incubation with a PPARγ antagonist, GW9662, attenuated geniposide-induced up-regulation of PPARγ and down-regulation of VEGF-A. Over-expression of VEGF-A weakened geniposide-suppressed cell proliferation, migration, and angiogenesis of NSCLC. Geniposide exerted antitumor and anti-angiogenic actions on NSCLC through regulation of PPARγ/VEGF-A pathway.\",\"PeriodicalId\":20868,\"journal\":{\"name\":\"Quality Assurance and Safety of Crops & Foods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality Assurance and Safety of Crops & Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15586/qas.v14i1.1016\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Assurance and Safety of Crops & Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15586/qas.v14i1.1016","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Geniposide inhibits non-small cell lung cancer cell migration and angiogenesis by regulating PPARγ/VEGF-A pathway
Geniposide, an iridoid glycoside derived from traditional Chinese herb, Gardenia jasminoides Ellis, exerts antitumor effect against distinct cancers. The role of geniposide in the migration and angiogenesis of non-small cell lung cancer (NSCLC) cell was investigated in this study. Cancer cells were incubated with various concentrations of geniposide, and proliferative ability was detected by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) staining. Wound healing and transwell were used to assess cell migration and invasion, respectively. Tube formation assay was performed to investigate angiogenesis. Geniposide reduced NSCLC cell proliferation, and suppressed NSCLC cell migration and invasion in a dosage-dependent manner. Angiogenesis of NSCLC was also inhibited by geniposide. Geniposide increased the protein expression of peroxisome proliferator-activated receptor gamma (PPARγ) and decreased vascular endothelial growth factor-A (VEGF-A) protein expression in NSCLC cells. Incubation with a PPARγ antagonist, GW9662, attenuated geniposide-induced up-regulation of PPARγ and down-regulation of VEGF-A. Over-expression of VEGF-A weakened geniposide-suppressed cell proliferation, migration, and angiogenesis of NSCLC. Geniposide exerted antitumor and anti-angiogenic actions on NSCLC through regulation of PPARγ/VEGF-A pathway.
期刊介绍:
''Quality Assurance and Safety of Crops & Foods'' is an international peer-reviewed journal publishing research and review papers associated with the quality and safety of food and food sources including cereals, grains, oilseeds, fruits, root crops and animal sources. It targets both primary materials and their conversion to human foods. There is a strong focus on the development and application of new analytical tools and their potential for quality assessment, assurance, control and safety. The scope includes issues of risk assessment, traceability, authenticity, food security and socio-economic impacts. Manuscripts presenting novel data and information that are likely to significantly contribute to scientific knowledge in areas of food quality and safety will be considered.
''Quality Assurance and Safety of Crops & Foods'' provides a forum for all those working in the specialist field of food quality and safety to report on the progress and outcomes of their research.