{"title":"分级软件定义网络中流量控制开销的估计","authors":"Vorotnikov","doi":"10.3849/aimt.01351","DOIUrl":null,"url":null,"abstract":"Software-defined networks of a large dimension have a complex and branched structure; they are inherent in them by continuous expansion and dynamic characteristics, which significantly limits the application of known methods for their modelling and optimization. Consequently, the problems of the analysis of next-generation networks at the system level and the study of their new features, mainly due to large size and complex geometry (topology), are relevant. The tasks of constructing optimal structures of complex networks are solved by means of the theory of hierarchical systems, which is widely used to describe network structures, in particular, flow control networks. The work is devoted to the load balancing in SDN depending on their topological hierarchical structure and type of traffic (vertical, horizontal, and hybrid).","PeriodicalId":39125,"journal":{"name":"Advances in Military Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimating the Overhead of Flow Control in Hierarchical Software-Defined Networks\",\"authors\":\"Vorotnikov\",\"doi\":\"10.3849/aimt.01351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software-defined networks of a large dimension have a complex and branched structure; they are inherent in them by continuous expansion and dynamic characteristics, which significantly limits the application of known methods for their modelling and optimization. Consequently, the problems of the analysis of next-generation networks at the system level and the study of their new features, mainly due to large size and complex geometry (topology), are relevant. The tasks of constructing optimal structures of complex networks are solved by means of the theory of hierarchical systems, which is widely used to describe network structures, in particular, flow control networks. The work is devoted to the load balancing in SDN depending on their topological hierarchical structure and type of traffic (vertical, horizontal, and hybrid).\",\"PeriodicalId\":39125,\"journal\":{\"name\":\"Advances in Military Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Military Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3849/aimt.01351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Military Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3849/aimt.01351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Estimating the Overhead of Flow Control in Hierarchical Software-Defined Networks
Software-defined networks of a large dimension have a complex and branched structure; they are inherent in them by continuous expansion and dynamic characteristics, which significantly limits the application of known methods for their modelling and optimization. Consequently, the problems of the analysis of next-generation networks at the system level and the study of their new features, mainly due to large size and complex geometry (topology), are relevant. The tasks of constructing optimal structures of complex networks are solved by means of the theory of hierarchical systems, which is widely used to describe network structures, in particular, flow control networks. The work is devoted to the load balancing in SDN depending on their topological hierarchical structure and type of traffic (vertical, horizontal, and hybrid).