{"title":"Twitter文件对Corona病毒影响的情绪分析使用了Naive Bayes Classifier的方法","authors":"Ni Made Ayu Juli Astari, D. Divayana, G. Indrawan","doi":"10.30864/jsi.v15i1.332","DOIUrl":null,"url":null,"abstract":"Virus Corona menjadi permasalahan internasional pada tahun 2020. Hal ini sangat berdampak bagi kehidupan masyarakat. Pemerintah Indonesia mengambil peran dalam menekan peningkatan jumlah penderita virus Corona dengan cara membatasi kegiatan masyarakat di luar rumah. Salah satu dampak yang signifikan dari Virus Corona adalah di sektor perekonomian. Oleh karena itu, perlu dilakukan analisis sentimen untuk menentukan kecenderungan opini masyarakat terhadap dampak virus Corona. Twitter merupakan salah satu platform yang digunakan oleh masyarakat untuk mengekspresikan kondisi terkini setelah virus Corona merambah. Tujuan dari penelitian ini adalah memperoleh analisis dokumen text untuk mendapatkan sentimen positif atau negatif masyarakat. Data yang digunakan merupakan dokumen tweet dari Twitter mengenai dampak virus Corona. Data yang terkumpul dibagi untuk digunakan sebagai data latih dan data uji proses klasifikasi. Metode yang digunakan untuk klasifikasi dalam penelitian ini adalah Metode Naive Bayes Classifier. Hasil klasifikasi dievaluasi menggunakan accuracy dan error rate dengan tujuan mengetahui keakuratan dokumen setelah diklasifikasi menjadi sentimen positif atau negatif. Hasil penelitian menunjukkan metode Naive Bayes mampu mengklasifikasi dokumen tweet dengan akurasi 67% dan error rate sebesar 33%. Percobaan dengan menggunakan 3 jumlah data berbeda (100, 200, dan 500) menghasilkan selisih nilai akurasi yang tidak jauh berbeda yaitu 0,02. Hal ini menunjukkan metode Naive Bayes untuk klasifikasi data tweet terkait dampak virus Corona menghasilkan performa yang stabil. Nilai accuracy yang diperoleh cukup baik dan penelitian selanjutnya bisa dikembangkan dengan memperhitungkan unsur semantik pada dokumen tweet.","PeriodicalId":30123,"journal":{"name":"Journal of Systems Integration","volume":"15 1","pages":"27-29"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier\",\"authors\":\"Ni Made Ayu Juli Astari, D. Divayana, G. Indrawan\",\"doi\":\"10.30864/jsi.v15i1.332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virus Corona menjadi permasalahan internasional pada tahun 2020. Hal ini sangat berdampak bagi kehidupan masyarakat. Pemerintah Indonesia mengambil peran dalam menekan peningkatan jumlah penderita virus Corona dengan cara membatasi kegiatan masyarakat di luar rumah. Salah satu dampak yang signifikan dari Virus Corona adalah di sektor perekonomian. Oleh karena itu, perlu dilakukan analisis sentimen untuk menentukan kecenderungan opini masyarakat terhadap dampak virus Corona. Twitter merupakan salah satu platform yang digunakan oleh masyarakat untuk mengekspresikan kondisi terkini setelah virus Corona merambah. Tujuan dari penelitian ini adalah memperoleh analisis dokumen text untuk mendapatkan sentimen positif atau negatif masyarakat. Data yang digunakan merupakan dokumen tweet dari Twitter mengenai dampak virus Corona. Data yang terkumpul dibagi untuk digunakan sebagai data latih dan data uji proses klasifikasi. Metode yang digunakan untuk klasifikasi dalam penelitian ini adalah Metode Naive Bayes Classifier. Hasil klasifikasi dievaluasi menggunakan accuracy dan error rate dengan tujuan mengetahui keakuratan dokumen setelah diklasifikasi menjadi sentimen positif atau negatif. Hasil penelitian menunjukkan metode Naive Bayes mampu mengklasifikasi dokumen tweet dengan akurasi 67% dan error rate sebesar 33%. Percobaan dengan menggunakan 3 jumlah data berbeda (100, 200, dan 500) menghasilkan selisih nilai akurasi yang tidak jauh berbeda yaitu 0,02. Hal ini menunjukkan metode Naive Bayes untuk klasifikasi data tweet terkait dampak virus Corona menghasilkan performa yang stabil. Nilai accuracy yang diperoleh cukup baik dan penelitian selanjutnya bisa dikembangkan dengan memperhitungkan unsur semantik pada dokumen tweet.\",\"PeriodicalId\":30123,\"journal\":{\"name\":\"Journal of Systems Integration\",\"volume\":\"15 1\",\"pages\":\"27-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30864/jsi.v15i1.332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30864/jsi.v15i1.332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier
Virus Corona menjadi permasalahan internasional pada tahun 2020. Hal ini sangat berdampak bagi kehidupan masyarakat. Pemerintah Indonesia mengambil peran dalam menekan peningkatan jumlah penderita virus Corona dengan cara membatasi kegiatan masyarakat di luar rumah. Salah satu dampak yang signifikan dari Virus Corona adalah di sektor perekonomian. Oleh karena itu, perlu dilakukan analisis sentimen untuk menentukan kecenderungan opini masyarakat terhadap dampak virus Corona. Twitter merupakan salah satu platform yang digunakan oleh masyarakat untuk mengekspresikan kondisi terkini setelah virus Corona merambah. Tujuan dari penelitian ini adalah memperoleh analisis dokumen text untuk mendapatkan sentimen positif atau negatif masyarakat. Data yang digunakan merupakan dokumen tweet dari Twitter mengenai dampak virus Corona. Data yang terkumpul dibagi untuk digunakan sebagai data latih dan data uji proses klasifikasi. Metode yang digunakan untuk klasifikasi dalam penelitian ini adalah Metode Naive Bayes Classifier. Hasil klasifikasi dievaluasi menggunakan accuracy dan error rate dengan tujuan mengetahui keakuratan dokumen setelah diklasifikasi menjadi sentimen positif atau negatif. Hasil penelitian menunjukkan metode Naive Bayes mampu mengklasifikasi dokumen tweet dengan akurasi 67% dan error rate sebesar 33%. Percobaan dengan menggunakan 3 jumlah data berbeda (100, 200, dan 500) menghasilkan selisih nilai akurasi yang tidak jauh berbeda yaitu 0,02. Hal ini menunjukkan metode Naive Bayes untuk klasifikasi data tweet terkait dampak virus Corona menghasilkan performa yang stabil. Nilai accuracy yang diperoleh cukup baik dan penelitian selanjutnya bisa dikembangkan dengan memperhitungkan unsur semantik pada dokumen tweet.