Priyanka Pandya, Sushil Kumar, Amar A. Sakure, Rutul Rafaliya, Ghanshyam B. Patil
{"title":"氧化锌纳米膜通过诱导胁迫响应基因和生理生化变化提高小麦抗旱性","authors":"Priyanka Pandya, Sushil Kumar, Amar A. Sakure, Rutul Rafaliya, Ghanshyam B. Patil","doi":"10.1016/j.cpb.2023.100292","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc oxide nanoparticles (ZnO NPs) are currently being used in a number of applications, including agriculture. In agricultural regions all throughout the world, drought poses a serious danger to crop production and development. The outcome of this experiment showed that the treatment of 250 ppm ZnO NPs provides drought resistance by considerably improving physiological and biochemical traits, viz., shoot and root length, RWC, MSI, Zn content, total chlorophyll and protein content, biomass accumulation, osmolytes content, and antioxidant enzyme activities. Similar results were found by gene expression analysis. The expression of drought-responsive genes (<em>DHN, DREB, P5CS, BADH, SOD, CAT, APX, bZIP</em> and <em>NAC</em>) were highly upregulated in ZnO- treated plants compared with non-ZnO treated root and leaf tissues of plants under stress and non-stress conditions. The osmoregulation-related genes (<em>P5CS and BADH</em>) were highly expressed in ZnO treated plants over non-ZnO treated samples in both conditions (stress and control). However, the relative accumulation of these genes was higher root tissues compared to leaf tissues. According to the results, ZnO NPs caused an instantaneous rise in <em>P5CS</em> and <em>BADH</em> expression, which function as stress signaling molecules and trigger the production of genes that are responsive to drought. This results in the activation of the defense system and a greater ability to withstand stress. ZnO NPs in general may, under drought conditions, influence the expression of genes that are drought-inducible via both ABA-dependent and ABA-independent pathways.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc oxide nanopriming elevates wheat drought tolerance by inducing stress-responsive genes and physio-biochemical changes\",\"authors\":\"Priyanka Pandya, Sushil Kumar, Amar A. Sakure, Rutul Rafaliya, Ghanshyam B. Patil\",\"doi\":\"10.1016/j.cpb.2023.100292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zinc oxide nanoparticles (ZnO NPs) are currently being used in a number of applications, including agriculture. In agricultural regions all throughout the world, drought poses a serious danger to crop production and development. The outcome of this experiment showed that the treatment of 250 ppm ZnO NPs provides drought resistance by considerably improving physiological and biochemical traits, viz., shoot and root length, RWC, MSI, Zn content, total chlorophyll and protein content, biomass accumulation, osmolytes content, and antioxidant enzyme activities. Similar results were found by gene expression analysis. The expression of drought-responsive genes (<em>DHN, DREB, P5CS, BADH, SOD, CAT, APX, bZIP</em> and <em>NAC</em>) were highly upregulated in ZnO- treated plants compared with non-ZnO treated root and leaf tissues of plants under stress and non-stress conditions. The osmoregulation-related genes (<em>P5CS and BADH</em>) were highly expressed in ZnO treated plants over non-ZnO treated samples in both conditions (stress and control). However, the relative accumulation of these genes was higher root tissues compared to leaf tissues. According to the results, ZnO NPs caused an instantaneous rise in <em>P5CS</em> and <em>BADH</em> expression, which function as stress signaling molecules and trigger the production of genes that are responsive to drought. This results in the activation of the defense system and a greater ability to withstand stress. ZnO NPs in general may, under drought conditions, influence the expression of genes that are drought-inducible via both ABA-dependent and ABA-independent pathways.</p></div>\",\"PeriodicalId\":38090,\"journal\":{\"name\":\"Current Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221466282300021X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221466282300021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Zinc oxide nanopriming elevates wheat drought tolerance by inducing stress-responsive genes and physio-biochemical changes
Zinc oxide nanoparticles (ZnO NPs) are currently being used in a number of applications, including agriculture. In agricultural regions all throughout the world, drought poses a serious danger to crop production and development. The outcome of this experiment showed that the treatment of 250 ppm ZnO NPs provides drought resistance by considerably improving physiological and biochemical traits, viz., shoot and root length, RWC, MSI, Zn content, total chlorophyll and protein content, biomass accumulation, osmolytes content, and antioxidant enzyme activities. Similar results were found by gene expression analysis. The expression of drought-responsive genes (DHN, DREB, P5CS, BADH, SOD, CAT, APX, bZIP and NAC) were highly upregulated in ZnO- treated plants compared with non-ZnO treated root and leaf tissues of plants under stress and non-stress conditions. The osmoregulation-related genes (P5CS and BADH) were highly expressed in ZnO treated plants over non-ZnO treated samples in both conditions (stress and control). However, the relative accumulation of these genes was higher root tissues compared to leaf tissues. According to the results, ZnO NPs caused an instantaneous rise in P5CS and BADH expression, which function as stress signaling molecules and trigger the production of genes that are responsive to drought. This results in the activation of the defense system and a greater ability to withstand stress. ZnO NPs in general may, under drought conditions, influence the expression of genes that are drought-inducible via both ABA-dependent and ABA-independent pathways.
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.