Jun Wen, Qi Gao, Jingnan Chen, Xinya Li, Kaiyue Zhang, Gang He, Min Dai, Pan Song
{"title":"经导管主动脉瓣植入术后非环形主动脉环患者主动脉不良事件的风险评估:一项数值研究","authors":"Jun Wen, Qi Gao, Jingnan Chen, Xinya Li, Kaiyue Zhang, Gang He, Min Dai, Pan Song","doi":"10.1007/s10237-023-01725-2","DOIUrl":null,"url":null,"abstract":"<div><p>Transcatheter aortic valve implantation (TAVI) is a micro-invasive surgery used to treat patients with aortic stenosis (AS) efficiently. However, the uneven valve expansion can cause a non-circular annulus, which is one of the main factors leading to complications after TAVI. As a preliminary work, the main purpose of this study was to evaluate the risk of adverse aortic events in patients with a non-circular aortic annulus after TAVI. This study numerically investigated the distribution of four wall shear stress (WSS)-based indicators and three helicity-based indicators in eight patient-specific aortas with different annulus including circular, type I elliptical and type II elliptical shapes. Both elliptical annulus features can significantly enhance the intensity of the helicity (<i>h</i>2) in the ascending aorta (<i>p</i>?<?0.001). However, for the type I elliptical annulus, the spiral flow structure was changed into low-velocity and disturbed flow pattern close to the inner side of the aortic arch. For the type II elliptical annulus, the spiral flow remained but became skewed in distribution. The elliptical annulus feature could increase the general level WSS-based indicators, especially in the ascending aorta. However, due to the disturbance of spiral flow or second helical flow in ascending aortas, areas with low TAWSS accompanied by high oscillatory shear index (OSI) and cross flow index (CFI) were observed in all the ascending aortas with non-circular annulus. The elliptical annulus feature can change the hemodynamic environment in the aortic arch, especially in the ascending aorta. Although both elliptical annulus features enhanced the strength of helicity, the uniform distribution of the helical flow was disturbed, especially in the ascending aorta, indicating the potential risk of adverse aortic events may increase. Therefore, for the patients without paravalvular leak but elliptical annulus shape after TAVI treatment, surgeons may be needed to consider further dilatation to make the non-circular annulus become circular.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"22 4","pages":"1379 - 1394"},"PeriodicalIF":3.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Risk evaluation of adverse aortic events in patients with non-circular aortic annulus after transcatheter aortic valve implantation: a numerical study\",\"authors\":\"Jun Wen, Qi Gao, Jingnan Chen, Xinya Li, Kaiyue Zhang, Gang He, Min Dai, Pan Song\",\"doi\":\"10.1007/s10237-023-01725-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transcatheter aortic valve implantation (TAVI) is a micro-invasive surgery used to treat patients with aortic stenosis (AS) efficiently. However, the uneven valve expansion can cause a non-circular annulus, which is one of the main factors leading to complications after TAVI. As a preliminary work, the main purpose of this study was to evaluate the risk of adverse aortic events in patients with a non-circular aortic annulus after TAVI. This study numerically investigated the distribution of four wall shear stress (WSS)-based indicators and three helicity-based indicators in eight patient-specific aortas with different annulus including circular, type I elliptical and type II elliptical shapes. Both elliptical annulus features can significantly enhance the intensity of the helicity (<i>h</i>2) in the ascending aorta (<i>p</i>?<?0.001). However, for the type I elliptical annulus, the spiral flow structure was changed into low-velocity and disturbed flow pattern close to the inner side of the aortic arch. For the type II elliptical annulus, the spiral flow remained but became skewed in distribution. The elliptical annulus feature could increase the general level WSS-based indicators, especially in the ascending aorta. However, due to the disturbance of spiral flow or second helical flow in ascending aortas, areas with low TAWSS accompanied by high oscillatory shear index (OSI) and cross flow index (CFI) were observed in all the ascending aortas with non-circular annulus. The elliptical annulus feature can change the hemodynamic environment in the aortic arch, especially in the ascending aorta. Although both elliptical annulus features enhanced the strength of helicity, the uniform distribution of the helical flow was disturbed, especially in the ascending aorta, indicating the potential risk of adverse aortic events may increase. Therefore, for the patients without paravalvular leak but elliptical annulus shape after TAVI treatment, surgeons may be needed to consider further dilatation to make the non-circular annulus become circular.</p></div>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\"22 4\",\"pages\":\"1379 - 1394\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10237-023-01725-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-023-01725-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Risk evaluation of adverse aortic events in patients with non-circular aortic annulus after transcatheter aortic valve implantation: a numerical study
Transcatheter aortic valve implantation (TAVI) is a micro-invasive surgery used to treat patients with aortic stenosis (AS) efficiently. However, the uneven valve expansion can cause a non-circular annulus, which is one of the main factors leading to complications after TAVI. As a preliminary work, the main purpose of this study was to evaluate the risk of adverse aortic events in patients with a non-circular aortic annulus after TAVI. This study numerically investigated the distribution of four wall shear stress (WSS)-based indicators and three helicity-based indicators in eight patient-specific aortas with different annulus including circular, type I elliptical and type II elliptical shapes. Both elliptical annulus features can significantly enhance the intensity of the helicity (h2) in the ascending aorta (p?<?0.001). However, for the type I elliptical annulus, the spiral flow structure was changed into low-velocity and disturbed flow pattern close to the inner side of the aortic arch. For the type II elliptical annulus, the spiral flow remained but became skewed in distribution. The elliptical annulus feature could increase the general level WSS-based indicators, especially in the ascending aorta. However, due to the disturbance of spiral flow or second helical flow in ascending aortas, areas with low TAWSS accompanied by high oscillatory shear index (OSI) and cross flow index (CFI) were observed in all the ascending aortas with non-circular annulus. The elliptical annulus feature can change the hemodynamic environment in the aortic arch, especially in the ascending aorta. Although both elliptical annulus features enhanced the strength of helicity, the uniform distribution of the helical flow was disturbed, especially in the ascending aorta, indicating the potential risk of adverse aortic events may increase. Therefore, for the patients without paravalvular leak but elliptical annulus shape after TAVI treatment, surgeons may be needed to consider further dilatation to make the non-circular annulus become circular.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.