CDK1在妊娠期糖尿病发病机制中的作用:生物信息学分析与验证

Yifan Mao, Feiyun Jiang, Rui Xu, Fanglei Yang, Yuan Li, Li Li
{"title":"CDK1在妊娠期糖尿病发病机制中的作用:生物信息学分析与验证","authors":"Yifan Mao, Feiyun Jiang, Rui Xu, Fanglei Yang, Yuan Li, Li Li","doi":"10.1166/jbt.2023.3272","DOIUrl":null,"url":null,"abstract":"Introduction: To explore the pathogenesis of gestational diabetic nephropathy (GDM) and its possible biological function by using large data bioinformatics mining algorithm. Materials and methods: The Gene Expression Omnibus (GEO) was retrieved and the data of GDM differential\n expression chip were screened and downloaded. The differentially expressed genes were screened by using R software Lima package (Log2FC > 1; P < 0.05). Functional enrichment of differentially expressed genes was performed. Protein–protein interaction network of GDM pathogenesis\n was constructed by the database (STRING) to analyze the interaction between differentially expressed gene-coding proteins. Using Cytohubb software to further screen the key genes (hub genes) in the signaling pathway. In next step, 35 case of GDM and 39 normal pregnant women were selected as\n subjects. The expression levels of key gene coding proteins in venous blood and placenta tissues of GDM and normal pregnant women detected by immunohistochemical and qRT-PCR. And using cell experiment to analysis the key gene’s effects in GDM. Results: By Bioinformatics Analysis,\n CDK1 was significantly depressed in GDM (P <0.001), In clinical data, CDK1 protein and mRNA expressions were also significantly down-regulation in GDM compared with NC (P <0.001). In vitro study, with high glucose treatment, the cell were hyperproliferation with\n CDK1 depressing and AKT overexpression (P <0.001). However, with CDK1 supplement, the cell returned to normal with CDK1 overexpression and AKT depressing (P <0.001). Conclusion: CDK1 is differentially expressed in patients with GDM and play a key part in occurrence\n and development of GDM. CDK1 may be a key target for treatment and prevention of GDM.","PeriodicalId":15300,"journal":{"name":"Journal of Biomaterials and Tissue Engineering","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CDK1 in Pathogenesis of Gestational Diabetes Mellitus: A Bioinformatics Analysis and Verification\",\"authors\":\"Yifan Mao, Feiyun Jiang, Rui Xu, Fanglei Yang, Yuan Li, Li Li\",\"doi\":\"10.1166/jbt.2023.3272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: To explore the pathogenesis of gestational diabetic nephropathy (GDM) and its possible biological function by using large data bioinformatics mining algorithm. Materials and methods: The Gene Expression Omnibus (GEO) was retrieved and the data of GDM differential\\n expression chip were screened and downloaded. The differentially expressed genes were screened by using R software Lima package (Log2FC > 1; P < 0.05). Functional enrichment of differentially expressed genes was performed. Protein–protein interaction network of GDM pathogenesis\\n was constructed by the database (STRING) to analyze the interaction between differentially expressed gene-coding proteins. Using Cytohubb software to further screen the key genes (hub genes) in the signaling pathway. In next step, 35 case of GDM and 39 normal pregnant women were selected as\\n subjects. The expression levels of key gene coding proteins in venous blood and placenta tissues of GDM and normal pregnant women detected by immunohistochemical and qRT-PCR. And using cell experiment to analysis the key gene’s effects in GDM. Results: By Bioinformatics Analysis,\\n CDK1 was significantly depressed in GDM (P <0.001), In clinical data, CDK1 protein and mRNA expressions were also significantly down-regulation in GDM compared with NC (P <0.001). In vitro study, with high glucose treatment, the cell were hyperproliferation with\\n CDK1 depressing and AKT overexpression (P <0.001). However, with CDK1 supplement, the cell returned to normal with CDK1 overexpression and AKT depressing (P <0.001). Conclusion: CDK1 is differentially expressed in patients with GDM and play a key part in occurrence\\n and development of GDM. CDK1 may be a key target for treatment and prevention of GDM.\",\"PeriodicalId\":15300,\"journal\":{\"name\":\"Journal of Biomaterials and Tissue Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1166/jbt.2023.3272\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials and Tissue Engineering","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1166/jbt.2023.3272","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

前言:利用大数据生物信息学挖掘算法探讨妊娠期糖尿病肾病(GDM)的发病机制及其可能的生物学功能。材料和方法:检索Gene Expression Omnibus (GEO),筛选下载GDM差异表达芯片数据。采用R软件Lima包(Log2FC >1;P < 0.05)。对差异表达基因进行功能富集。利用数据库(STRING)构建GDM发病机制的蛋白-蛋白相互作用网络,分析差异表达基因编码蛋白之间的相互作用。利用Cytohubb软件进一步筛选信号通路中的关键基因(枢纽基因)。下一步选择35例GDM和39例正常孕妇作为研究对象。应用免疫组织化学和qRT-PCR检测GDM和正常孕妇静脉血和胎盘组织中关键基因编码蛋白的表达水平。并通过细胞实验分析关键基因在GDM中的作用。结果:通过生物信息学分析,GDM中CDK1显著下调(P <0.001),临床资料显示,GDM中CDK1蛋白和mRNA的表达也较NC显著下调(P <0.001)。体外实验中,高糖处理下细胞增生,CDK1抑制,AKT过表达(P <0.001)。然而,补充CDK1后,细胞恢复正常,CDK1过表达,AKT抑制(P <0.001)。结论:CDK1在GDM患者中存在差异表达,在GDM的发生发展中起关键作用。CDK1可能是治疗和预防GDM的关键靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CDK1 in Pathogenesis of Gestational Diabetes Mellitus: A Bioinformatics Analysis and Verification
Introduction: To explore the pathogenesis of gestational diabetic nephropathy (GDM) and its possible biological function by using large data bioinformatics mining algorithm. Materials and methods: The Gene Expression Omnibus (GEO) was retrieved and the data of GDM differential expression chip were screened and downloaded. The differentially expressed genes were screened by using R software Lima package (Log2FC > 1; P < 0.05). Functional enrichment of differentially expressed genes was performed. Protein–protein interaction network of GDM pathogenesis was constructed by the database (STRING) to analyze the interaction between differentially expressed gene-coding proteins. Using Cytohubb software to further screen the key genes (hub genes) in the signaling pathway. In next step, 35 case of GDM and 39 normal pregnant women were selected as subjects. The expression levels of key gene coding proteins in venous blood and placenta tissues of GDM and normal pregnant women detected by immunohistochemical and qRT-PCR. And using cell experiment to analysis the key gene’s effects in GDM. Results: By Bioinformatics Analysis, CDK1 was significantly depressed in GDM (P <0.001), In clinical data, CDK1 protein and mRNA expressions were also significantly down-regulation in GDM compared with NC (P <0.001). In vitro study, with high glucose treatment, the cell were hyperproliferation with CDK1 depressing and AKT overexpression (P <0.001). However, with CDK1 supplement, the cell returned to normal with CDK1 overexpression and AKT depressing (P <0.001). Conclusion: CDK1 is differentially expressed in patients with GDM and play a key part in occurrence and development of GDM. CDK1 may be a key target for treatment and prevention of GDM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
332
审稿时长
>12 weeks
期刊最新文献
Occupational stress in clinical and non-clinical staff in Child and Adolescent Mental Health Services (CAMHS): a cross-sectional study. The Real-Time Detection of Mouse Double Minute-2 mRNA Expression in Living Cells with the Gold Nanoparticle (Journal of Biomaterials and Tissue Engineering, Vol. 8(1), pp. 27–34 (2018)) The Predictive Value of Conventional Ultrasound Signs Plus Serological Indices for Neck Lymph Node Metastasis in Papillary Thyroid Cancer Significant Effect of Ritodrine Hydrochloride Combined with Magnesium Sulfate for Treatment of Patients with Premature Rupture of Membranes Application and Potential of Nanobiomaterials in Bone Regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1