Muhammad Safwan Abdul Aziz, Ahmad Zhafran Ahmad, M. Satar, Muhammad Abdul Rahman Paiman, Mohd Zukhairi Abd
{"title":"可调谐动态减振器对汽车暖通空调系统中悍马型噪声和振动的衰减","authors":"Muhammad Safwan Abdul Aziz, Ahmad Zhafran Ahmad, M. Satar, Muhammad Abdul Rahman Paiman, Mohd Zukhairi Abd","doi":"10.24425/aoa.2022.142007","DOIUrl":null,"url":null,"abstract":"Heating, ventilation, air conditioning (HVAC) is one of crucial system in a vehicle. Unfortunately, its performance can be affected by the vibration of HVAC components, which subsequently produced unwanted noises. This paper presents an innovative design solution which called as tuneable dynamic vibration absorber (TDVA) to reduce the humming-type noise and vibration in the HVAC system. A detail investigation is carried by developing a lab-scale HVAC model that has the capability to imitate the real HVAC operation in a vehicle. An alternated air-condition (AC) with a fixed blower speed is implied in the study. The analysis of humming-type noise and vibration induced from the HVAC components are performed, and the TDVA is designed and tuned according to the natural frequency of the AC pipe before the attachment. The humming-type noise and vibration characteristics of the HVAC components are compared before and after the implementation of the TDVA. The findings shown that the HVAC model data compares well with the vehicle data, whereby the implementation of TDVA is found to reduce the vibration of the AC pipe by 79% and 61% in both idle and operating conditions and this subsequently improved the humming-type noise of the HVAC system. It also been observed that the TDVA has an effective frequency range around 75–255 Hz and 100–500 Hz for the HVAC model and vehicle","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attenuation of Humming-Type Noise and Vibration in Vehicle HVAC System Using a Tuneable Dynamic Vibration Absorber\",\"authors\":\"Muhammad Safwan Abdul Aziz, Ahmad Zhafran Ahmad, M. Satar, Muhammad Abdul Rahman Paiman, Mohd Zukhairi Abd\",\"doi\":\"10.24425/aoa.2022.142007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heating, ventilation, air conditioning (HVAC) is one of crucial system in a vehicle. Unfortunately, its performance can be affected by the vibration of HVAC components, which subsequently produced unwanted noises. This paper presents an innovative design solution which called as tuneable dynamic vibration absorber (TDVA) to reduce the humming-type noise and vibration in the HVAC system. A detail investigation is carried by developing a lab-scale HVAC model that has the capability to imitate the real HVAC operation in a vehicle. An alternated air-condition (AC) with a fixed blower speed is implied in the study. The analysis of humming-type noise and vibration induced from the HVAC components are performed, and the TDVA is designed and tuned according to the natural frequency of the AC pipe before the attachment. The humming-type noise and vibration characteristics of the HVAC components are compared before and after the implementation of the TDVA. The findings shown that the HVAC model data compares well with the vehicle data, whereby the implementation of TDVA is found to reduce the vibration of the AC pipe by 79% and 61% in both idle and operating conditions and this subsequently improved the humming-type noise of the HVAC system. It also been observed that the TDVA has an effective frequency range around 75–255 Hz and 100–500 Hz for the HVAC model and vehicle\",\"PeriodicalId\":8149,\"journal\":{\"name\":\"Archives of Acoustics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.24425/aoa.2022.142007\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.24425/aoa.2022.142007","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Attenuation of Humming-Type Noise and Vibration in Vehicle HVAC System Using a Tuneable Dynamic Vibration Absorber
Heating, ventilation, air conditioning (HVAC) is one of crucial system in a vehicle. Unfortunately, its performance can be affected by the vibration of HVAC components, which subsequently produced unwanted noises. This paper presents an innovative design solution which called as tuneable dynamic vibration absorber (TDVA) to reduce the humming-type noise and vibration in the HVAC system. A detail investigation is carried by developing a lab-scale HVAC model that has the capability to imitate the real HVAC operation in a vehicle. An alternated air-condition (AC) with a fixed blower speed is implied in the study. The analysis of humming-type noise and vibration induced from the HVAC components are performed, and the TDVA is designed and tuned according to the natural frequency of the AC pipe before the attachment. The humming-type noise and vibration characteristics of the HVAC components are compared before and after the implementation of the TDVA. The findings shown that the HVAC model data compares well with the vehicle data, whereby the implementation of TDVA is found to reduce the vibration of the AC pipe by 79% and 61% in both idle and operating conditions and this subsequently improved the humming-type noise of the HVAC system. It also been observed that the TDVA has an effective frequency range around 75–255 Hz and 100–500 Hz for the HVAC model and vehicle
期刊介绍:
Archives of Acoustics, the peer-reviewed quarterly journal publishes original research papers from all areas of acoustics like:
acoustical measurements and instrumentation,
acoustics of musics,
acousto-optics,
architectural, building and environmental acoustics,
bioacoustics,
electroacoustics,
linear and nonlinear acoustics,
noise and vibration,
physical and chemical effects of sound,
physiological acoustics,
psychoacoustics,
quantum acoustics,
speech processing and communication systems,
speech production and perception,
transducers,
ultrasonics,
underwater acoustics.