霍乱流行模型的最优控制分析

P. Panja
{"title":"霍乱流行模型的最优控制分析","authors":"P. Panja","doi":"10.1142/S1793048019500024","DOIUrl":null,"url":null,"abstract":"In this paper, a cholera disease transmission mathematical model has been developed. According to the transmission mechanism of cholera disease, total human population has been classified into four subpopulations such as (i) Susceptible human, (ii) Exposed human, (iii) Infected human and (iv) Recovered human. Also, the total bacterial population has been classified into two subpopulations such as (i) Vibrio Cholerae that grows in the infected human intestine and (ii) Vibrio Cholerae in the environment. It is assumed that the cholera disease can be transmitted in a human population through the consumption of contaminated food and water by Vibrio Cholerae bacterium present in the environment. Also, it is assumed that Vibrio Cholerae bacterium is spread in the environment through the vomiting and feces of infected humans. Positivity and boundedness of solutions of our proposed system have been investigated. Equilibrium points and the basic reproduction number [Formula: see text] are evaluated. Local stability conditions of disease-free and endemic equilibrium points have been discussed. A sensitivity analysis has been carried out on the basic reproduction number [Formula: see text]. To eradicate cholera disease from the human population, an optimal control problem has been formulated and solved with the help of Pontryagin’s maximum principle. Here treatment, vaccination and awareness programs have been considered as control parameters to reduce the number of infected humans from cholera disease. Finally, the optimal control and the cost-effectiveness analysis of our proposed model have been performed numerically.","PeriodicalId":88835,"journal":{"name":"Biophysical reviews and letters","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793048019500024","citationCount":"17","resultStr":"{\"title\":\"Optimal Control Analysis of a Cholera Epidemic Model\",\"authors\":\"P. Panja\",\"doi\":\"10.1142/S1793048019500024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a cholera disease transmission mathematical model has been developed. According to the transmission mechanism of cholera disease, total human population has been classified into four subpopulations such as (i) Susceptible human, (ii) Exposed human, (iii) Infected human and (iv) Recovered human. Also, the total bacterial population has been classified into two subpopulations such as (i) Vibrio Cholerae that grows in the infected human intestine and (ii) Vibrio Cholerae in the environment. It is assumed that the cholera disease can be transmitted in a human population through the consumption of contaminated food and water by Vibrio Cholerae bacterium present in the environment. Also, it is assumed that Vibrio Cholerae bacterium is spread in the environment through the vomiting and feces of infected humans. Positivity and boundedness of solutions of our proposed system have been investigated. Equilibrium points and the basic reproduction number [Formula: see text] are evaluated. Local stability conditions of disease-free and endemic equilibrium points have been discussed. A sensitivity analysis has been carried out on the basic reproduction number [Formula: see text]. To eradicate cholera disease from the human population, an optimal control problem has been formulated and solved with the help of Pontryagin’s maximum principle. Here treatment, vaccination and awareness programs have been considered as control parameters to reduce the number of infected humans from cholera disease. Finally, the optimal control and the cost-effectiveness analysis of our proposed model have been performed numerically.\",\"PeriodicalId\":88835,\"journal\":{\"name\":\"Biophysical reviews and letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1793048019500024\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews and letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793048019500024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews and letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793048019500024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文建立了霍乱传播的数学模型。根据霍乱疾病的传播机制,将总人口分为四个亚群,如:(i)易感人群,(ii)暴露人群,(iii)受感染人群和(iv)康复人群。此外,总的细菌种群已被划分为两个亚群,如(i)在受感染的人肠道内生长的霍乱弧菌和(ii)环境中的霍乱弧菌。据推测,霍乱可通过食用环境中存在的霍乱弧菌污染的食物和水在人群中传播。此外,据推测,霍乱弧菌是通过被感染者的呕吐和粪便在环境中传播的。研究了系统解的正性和有界性。求出平衡点和基本再现数[公式:见文]。讨论了无病平衡点和地方病平衡点的局部稳定条件。对基本再现数进行了敏感性分析[公式:见文]。为了从人群中根除霍乱,我们提出了一个最优控制问题,并利用庞特里亚金的极大值原理进行了求解。在这里,治疗、疫苗接种和意识规划被认为是减少霍乱感染人数的控制参数。最后,对所提出的模型进行了最优控制和成本效益分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Control Analysis of a Cholera Epidemic Model
In this paper, a cholera disease transmission mathematical model has been developed. According to the transmission mechanism of cholera disease, total human population has been classified into four subpopulations such as (i) Susceptible human, (ii) Exposed human, (iii) Infected human and (iv) Recovered human. Also, the total bacterial population has been classified into two subpopulations such as (i) Vibrio Cholerae that grows in the infected human intestine and (ii) Vibrio Cholerae in the environment. It is assumed that the cholera disease can be transmitted in a human population through the consumption of contaminated food and water by Vibrio Cholerae bacterium present in the environment. Also, it is assumed that Vibrio Cholerae bacterium is spread in the environment through the vomiting and feces of infected humans. Positivity and boundedness of solutions of our proposed system have been investigated. Equilibrium points and the basic reproduction number [Formula: see text] are evaluated. Local stability conditions of disease-free and endemic equilibrium points have been discussed. A sensitivity analysis has been carried out on the basic reproduction number [Formula: see text]. To eradicate cholera disease from the human population, an optimal control problem has been formulated and solved with the help of Pontryagin’s maximum principle. Here treatment, vaccination and awareness programs have been considered as control parameters to reduce the number of infected humans from cholera disease. Finally, the optimal control and the cost-effectiveness analysis of our proposed model have been performed numerically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Repair and Regeneration of Bone Tissue by Scaffold Implant — A Biomechanical Review Markov Chains to Explore the Nanosystems for the Biophysical Studies of Cancers Role of Allee and Fear for Controlling Chaos in a Predator–Prey System with Circulation of Disease in Predator On Influence of Several Factors on Development of Tumors Role of Alternative Food in Controlling Chaotic Dynamics in an Eco-Epidemiological Model with Strong Allee Effects in Prey Populations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1