J. Kao, S. Chin, F. Chang, Yu-Han Tsai, Hua Wu, Huan-Jia Xu
{"title":"不同控制面类型潜艇螺旋桨辐射噪声的预测","authors":"J. Kao, S. Chin, F. Chang, Yu-Han Tsai, Hua Wu, Huan-Jia Xu","doi":"10.5957/josr.07190038","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to predict the noise radiated from submarine propellers with different control surface types (the cross- and X-type). When the propellers are free from cavitation, such as those of submarines at a diving depth, the radiated noise dominate, due to unsteady propeller forces. A well-known submarine model (DARPA SUBOFF) is taken as the computing sample. Simulations for hydrodynamics, including stern wakes and unsteady propeller forces, are carried out by using CFD (Computational Fluid Dynamics) technology, and the results are compared with the experimental data. The accuracy of the predicted noise depends on the CFD results. Comparisons between the CFD results and the experimental data are in good agreement. The CFD results are treated as dipole strengths in the linear wave theory to predict the radiated noise caused by the unsteady forces of the propeller. It is found that, when the control surface is of the X-type, the propeller inflow is more uniform, and the radiated noise can be decreased by about 5 dB compared to the cruciform control surface.\n \n \n When submarines are at diving depth, the noise generated by unsteady propeller forces (i.e., dipole strengths) will dominate. Because the juncture vortex caused by the sail makes the propeller inflow more nonuniform, the dipole strength will be enhanced and the radiated noise will be more noticeable. The uniformity of the wake field at the stern should be controlled well in order to restrain the radiated noise.\n","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Radiated Noise of a Submarine Propeller with Different Types of Control Surfaces\",\"authors\":\"J. Kao, S. Chin, F. Chang, Yu-Han Tsai, Hua Wu, Huan-Jia Xu\",\"doi\":\"10.5957/josr.07190038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to predict the noise radiated from submarine propellers with different control surface types (the cross- and X-type). When the propellers are free from cavitation, such as those of submarines at a diving depth, the radiated noise dominate, due to unsteady propeller forces. A well-known submarine model (DARPA SUBOFF) is taken as the computing sample. Simulations for hydrodynamics, including stern wakes and unsteady propeller forces, are carried out by using CFD (Computational Fluid Dynamics) technology, and the results are compared with the experimental data. The accuracy of the predicted noise depends on the CFD results. Comparisons between the CFD results and the experimental data are in good agreement. The CFD results are treated as dipole strengths in the linear wave theory to predict the radiated noise caused by the unsteady forces of the propeller. It is found that, when the control surface is of the X-type, the propeller inflow is more uniform, and the radiated noise can be decreased by about 5 dB compared to the cruciform control surface.\\n \\n \\n When submarines are at diving depth, the noise generated by unsteady propeller forces (i.e., dipole strengths) will dominate. Because the juncture vortex caused by the sail makes the propeller inflow more nonuniform, the dipole strength will be enhanced and the radiated noise will be more noticeable. The uniformity of the wake field at the stern should be controlled well in order to restrain the radiated noise.\\n\",\"PeriodicalId\":50052,\"journal\":{\"name\":\"Journal of Ship Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/josr.07190038\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/josr.07190038","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Predicting the Radiated Noise of a Submarine Propeller with Different Types of Control Surfaces
The objective of this paper is to predict the noise radiated from submarine propellers with different control surface types (the cross- and X-type). When the propellers are free from cavitation, such as those of submarines at a diving depth, the radiated noise dominate, due to unsteady propeller forces. A well-known submarine model (DARPA SUBOFF) is taken as the computing sample. Simulations for hydrodynamics, including stern wakes and unsteady propeller forces, are carried out by using CFD (Computational Fluid Dynamics) technology, and the results are compared with the experimental data. The accuracy of the predicted noise depends on the CFD results. Comparisons between the CFD results and the experimental data are in good agreement. The CFD results are treated as dipole strengths in the linear wave theory to predict the radiated noise caused by the unsteady forces of the propeller. It is found that, when the control surface is of the X-type, the propeller inflow is more uniform, and the radiated noise can be decreased by about 5 dB compared to the cruciform control surface.
When submarines are at diving depth, the noise generated by unsteady propeller forces (i.e., dipole strengths) will dominate. Because the juncture vortex caused by the sail makes the propeller inflow more nonuniform, the dipole strength will be enhanced and the radiated noise will be more noticeable. The uniformity of the wake field at the stern should be controlled well in order to restrain the radiated noise.
期刊介绍:
Original and Timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such, it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economic, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.