Jiaxin Li, Yiming Zhang, Shan Lu, Haryadi S. Gunawi, Xiaohui Gu, Feng Huang, Dongsheng Li
{"title":"分布式存储和计算系统的性能缺陷分析与检测","authors":"Jiaxin Li, Yiming Zhang, Shan Lu, Haryadi S. Gunawi, Xiaohui Gu, Feng Huang, Dongsheng Li","doi":"10.1145/3580281","DOIUrl":null,"url":null,"abstract":"This article systematically studies 99 distributed performance bugs from five widely deployed distributed storage and computing systems (Cassandra, HBase, HDFS, Hadoop MapReduce and ZooKeeper). We present the TaxPerf database, which collectively organizes the analysis results as over 400 classification labels and over 2,500 lines of bug re-description. TaxPerf is classified into six bug categories (and 18 bug subcategories) by their root causes; resource, blocking, synchronization, optimization, configuration, and logic. TaxPerf can be used as a benchmark for performance bug studies and debug tool designs. Although it is impractical to automatically detect all categories of performance bugs in TaxPerf, we find that an important category of blocking bugs can be effectively solved by analysis tools. We analyze the cascading nature of blocking bugs and design an automatic detection tool called PCatch, which (i) performs program analysis to identify code regions whose execution time can potentially increase dramatically with the workload size; (ii) adapts the traditional happens-before model to reason about software resource contention and performance dependency relationship; and (iii) uses dynamic tracking to identify whether the slowdown propagation is contained in one job. Evaluation shows that PCatch can accurately detect blocking bugs of representative distributed storage and computing systems by observing system executions under small-scale workloads.","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"19 1","pages":"1 - 33"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance Bug Analysis and Detection for Distributed Storage and Computing Systems\",\"authors\":\"Jiaxin Li, Yiming Zhang, Shan Lu, Haryadi S. Gunawi, Xiaohui Gu, Feng Huang, Dongsheng Li\",\"doi\":\"10.1145/3580281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article systematically studies 99 distributed performance bugs from five widely deployed distributed storage and computing systems (Cassandra, HBase, HDFS, Hadoop MapReduce and ZooKeeper). We present the TaxPerf database, which collectively organizes the analysis results as over 400 classification labels and over 2,500 lines of bug re-description. TaxPerf is classified into six bug categories (and 18 bug subcategories) by their root causes; resource, blocking, synchronization, optimization, configuration, and logic. TaxPerf can be used as a benchmark for performance bug studies and debug tool designs. Although it is impractical to automatically detect all categories of performance bugs in TaxPerf, we find that an important category of blocking bugs can be effectively solved by analysis tools. We analyze the cascading nature of blocking bugs and design an automatic detection tool called PCatch, which (i) performs program analysis to identify code regions whose execution time can potentially increase dramatically with the workload size; (ii) adapts the traditional happens-before model to reason about software resource contention and performance dependency relationship; and (iii) uses dynamic tracking to identify whether the slowdown propagation is contained in one job. Evaluation shows that PCatch can accurately detect blocking bugs of representative distributed storage and computing systems by observing system executions under small-scale workloads.\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":\"19 1\",\"pages\":\"1 - 33\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3580281\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3580281","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Performance Bug Analysis and Detection for Distributed Storage and Computing Systems
This article systematically studies 99 distributed performance bugs from five widely deployed distributed storage and computing systems (Cassandra, HBase, HDFS, Hadoop MapReduce and ZooKeeper). We present the TaxPerf database, which collectively organizes the analysis results as over 400 classification labels and over 2,500 lines of bug re-description. TaxPerf is classified into six bug categories (and 18 bug subcategories) by their root causes; resource, blocking, synchronization, optimization, configuration, and logic. TaxPerf can be used as a benchmark for performance bug studies and debug tool designs. Although it is impractical to automatically detect all categories of performance bugs in TaxPerf, we find that an important category of blocking bugs can be effectively solved by analysis tools. We analyze the cascading nature of blocking bugs and design an automatic detection tool called PCatch, which (i) performs program analysis to identify code regions whose execution time can potentially increase dramatically with the workload size; (ii) adapts the traditional happens-before model to reason about software resource contention and performance dependency relationship; and (iii) uses dynamic tracking to identify whether the slowdown propagation is contained in one job. Evaluation shows that PCatch can accurately detect blocking bugs of representative distributed storage and computing systems by observing system executions under small-scale workloads.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.