模拟逆冲断层周边应变场演化实验研究

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Earthquake Science Pub Date : 2023-02-01 DOI:10.1016/j.eqs.2023.02.001
Yonghong Zhao , Yanjun Xiao , Jiaying Yang , Xiaofan Li , Andong Xu
{"title":"模拟逆冲断层周边应变场演化实验研究","authors":"Yonghong Zhao ,&nbsp;Yanjun Xiao ,&nbsp;Jiaying Yang ,&nbsp;Xiaofan Li ,&nbsp;Andong Xu","doi":"10.1016/j.eqs.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Earthquakes result from continuous geodynamic processes. A topic of significant interest for the scientific community is to elaborate on the phenomena governing the faulting and fracturing of crustal rocks. Therefore, in this study, uniaxial compressive shear failure experiments were conducted on Fangshan marble rock samples with a prefabricated slot to simulate thrust faulting. The center of each marble plate (105 mm × 80 mm × 5 mm) was engraved with a 30-mm long double-sided nonpenetrating slot (depth: 2 mm, width: 0.5 mm). The deformation and destruction processes of the rock surface were recorded using a high-speed camera. The digital image correlation method was used to calculate the displacement and strain distribution and variation at different loading stages. The accumulative and incremental displacement fields <strong><em>u</em></strong> and <strong><em>v</em></strong>, strain field <em>e</em><sub><em>x</em></sub> and <em>e</em><sub><em>y</em></sub>, and shear strain <em>e</em><sub><em>xy</em></sub> were analyzed. When the loading level reached its ultimate value, the strain field was concentrated around the prefabricated slot. The concentration reached a maximum at the ends of the prefabricated slot. The magnitude of shear strain reached 0.1. This experiment contributes to our understanding of the dynamic process of active faulting.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"36 1","pages":"Pages 40-51"},"PeriodicalIF":1.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on strain field evolution around a simulated thrust fault\",\"authors\":\"Yonghong Zhao ,&nbsp;Yanjun Xiao ,&nbsp;Jiaying Yang ,&nbsp;Xiaofan Li ,&nbsp;Andong Xu\",\"doi\":\"10.1016/j.eqs.2023.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Earthquakes result from continuous geodynamic processes. A topic of significant interest for the scientific community is to elaborate on the phenomena governing the faulting and fracturing of crustal rocks. Therefore, in this study, uniaxial compressive shear failure experiments were conducted on Fangshan marble rock samples with a prefabricated slot to simulate thrust faulting. The center of each marble plate (105 mm × 80 mm × 5 mm) was engraved with a 30-mm long double-sided nonpenetrating slot (depth: 2 mm, width: 0.5 mm). The deformation and destruction processes of the rock surface were recorded using a high-speed camera. The digital image correlation method was used to calculate the displacement and strain distribution and variation at different loading stages. The accumulative and incremental displacement fields <strong><em>u</em></strong> and <strong><em>v</em></strong>, strain field <em>e</em><sub><em>x</em></sub> and <em>e</em><sub><em>y</em></sub>, and shear strain <em>e</em><sub><em>xy</em></sub> were analyzed. When the loading level reached its ultimate value, the strain field was concentrated around the prefabricated slot. The concentration reached a maximum at the ends of the prefabricated slot. The magnitude of shear strain reached 0.1. This experiment contributes to our understanding of the dynamic process of active faulting.</p></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":\"36 1\",\"pages\":\"Pages 40-51\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S167445192300006X\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167445192300006X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

地震是由连续的地球动力学过程引起的。科学界非常感兴趣的一个课题是详细说明控制地壳岩石断裂和破裂的现象。因此,本研究对房山大理岩样品进行了单轴压剪破坏试验,采用预制槽模拟逆冲断裂。每块大理石板的中心(105毫米× 80毫米× 5毫米)上刻有一个30毫米长的双面不穿透槽(深度2毫米,宽度0.5毫米)。用高速摄像机记录了岩石表面的变形和破坏过程。采用数字图像相关法计算了不同加载阶段的位移应变分布及变化。分析了累积位移场u和增量位移场v、应变场ex和ey以及剪切应变exy。当加载水平达到极限时,应变场集中在预制槽附近。浓度在预制槽的末端达到最大值。剪切应变量级达到0.1。该实验有助于我们对活动断裂的动力学过程的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study on strain field evolution around a simulated thrust fault

Earthquakes result from continuous geodynamic processes. A topic of significant interest for the scientific community is to elaborate on the phenomena governing the faulting and fracturing of crustal rocks. Therefore, in this study, uniaxial compressive shear failure experiments were conducted on Fangshan marble rock samples with a prefabricated slot to simulate thrust faulting. The center of each marble plate (105 mm × 80 mm × 5 mm) was engraved with a 30-mm long double-sided nonpenetrating slot (depth: 2 mm, width: 0.5 mm). The deformation and destruction processes of the rock surface were recorded using a high-speed camera. The digital image correlation method was used to calculate the displacement and strain distribution and variation at different loading stages. The accumulative and incremental displacement fields u and v, strain field ex and ey, and shear strain exy were analyzed. When the loading level reached its ultimate value, the strain field was concentrated around the prefabricated slot. The concentration reached a maximum at the ends of the prefabricated slot. The magnitude of shear strain reached 0.1. This experiment contributes to our understanding of the dynamic process of active faulting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
期刊最新文献
Structural similarity of lithospheric velocity models of Chinese mainland Assessing the effects of model parameter assumptions on surface-wave inversion results Evaluation of crustal deformation and associated strong motions induced by the 2022 Paktika earthquake, Afghanistan Mechanisms to explain soil liquefaction triggering, development, and persistence during an earthquake An illustrated guide to: Parsimonious multi-scale full-waveform inversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1