{"title":"塑料闪烁剂量测定用蓝色发光聚苯乙烯闪烁体","authors":"Ł. Kapłon, G. Moskal","doi":"10.1515/bams-2021-0088","DOIUrl":null,"url":null,"abstract":"Abstract Objectives Purpose of this research was to find the best blue-emitting fluorescent substance for plastic scintillator used for gamma radiation dosimetry. Scintillator should convert gamma radiation into blue light with high efficiency. Methods Plastic scintillators with fixed concentration of various fluorescent additives, called wavelength shifters, absorbing ultraviolet light and emitting blue light were manufactured by radical bulk polymerization of styrene. Light output were measured and compared to the light output of commercial plastic scintillator. Results Performed measurements of charge Compton spectra confirmed usefulness of majority of researched substances as wavelength shifters in plastic scintillators with emission maximum at blue range of visible light. Conclusions Plastic scintillation dosimeter may be constructed from manufactured polystyrene-based scintillators. Performance of synthesized scintillators is close to commercial polystyrene scintillators.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Blue-emitting polystyrene scintillators for plastic scintillation dosimetry\",\"authors\":\"Ł. Kapłon, G. Moskal\",\"doi\":\"10.1515/bams-2021-0088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives Purpose of this research was to find the best blue-emitting fluorescent substance for plastic scintillator used for gamma radiation dosimetry. Scintillator should convert gamma radiation into blue light with high efficiency. Methods Plastic scintillators with fixed concentration of various fluorescent additives, called wavelength shifters, absorbing ultraviolet light and emitting blue light were manufactured by radical bulk polymerization of styrene. Light output were measured and compared to the light output of commercial plastic scintillator. Results Performed measurements of charge Compton spectra confirmed usefulness of majority of researched substances as wavelength shifters in plastic scintillators with emission maximum at blue range of visible light. Conclusions Plastic scintillation dosimeter may be constructed from manufactured polystyrene-based scintillators. Performance of synthesized scintillators is close to commercial polystyrene scintillators.\",\"PeriodicalId\":42620,\"journal\":{\"name\":\"Bio-Algorithms and Med-Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-Algorithms and Med-Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bams-2021-0088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bams-2021-0088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Blue-emitting polystyrene scintillators for plastic scintillation dosimetry
Abstract Objectives Purpose of this research was to find the best blue-emitting fluorescent substance for plastic scintillator used for gamma radiation dosimetry. Scintillator should convert gamma radiation into blue light with high efficiency. Methods Plastic scintillators with fixed concentration of various fluorescent additives, called wavelength shifters, absorbing ultraviolet light and emitting blue light were manufactured by radical bulk polymerization of styrene. Light output were measured and compared to the light output of commercial plastic scintillator. Results Performed measurements of charge Compton spectra confirmed usefulness of majority of researched substances as wavelength shifters in plastic scintillators with emission maximum at blue range of visible light. Conclusions Plastic scintillation dosimeter may be constructed from manufactured polystyrene-based scintillators. Performance of synthesized scintillators is close to commercial polystyrene scintillators.
期刊介绍:
The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.