{"title":"再生环氧板废料部分替代细骨料的混凝土性能","authors":"Ping He, Cong Wang, Qiang Zhang, Jing Liu, Hao Lu","doi":"10.37358/mp.23.1.5643","DOIUrl":null,"url":null,"abstract":"\nThe waste recycling of epoxy resin-based fiber reinforced plastics is an important topic of current environmental protection. This work investigated the potential engineering benefits of applying simply crushed recycled epoxy resin-based fiber reinforced plastic in structural concrete. In this paper, the mixing and mechanical properties of concrete products with crushed and recycled waste epoxy plates instead of some fine aggregate were studied experimentally. Three kinds of recycled crushing materials with different particle sizes below 4mm, 4mm to 9mm, and 9mm were used to prepare 10 groups of concrete samples with different proportions by replacing sand with 5, 10, and 15% volumes, respectively. The results showed that the density of the recycled plastic concrete was reduced and the slump of the concrete was increased, with the increase of the recycled crushing materials, and the mechanical properties of concrete were improved within the 5%-10% admixture, and the best results of comprehensive mechanical properties were achieved when the admixture was 10% and the particle size was 4-9mm. These results indicated that it is feasible to replace concrete fine aggregates with recycled crushing materials of waste epoxy plate, and this study not only explores a new way to recycle waste epoxy resin-based fiber reinforced plastic, but also reduces the over-exploitation of sand natural resources, which have a high social and economic value.\n","PeriodicalId":18360,"journal":{"name":"Materiale Plastice","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Concrete with Recycled Epoxy Plate Waste as aPartial Replacement for Fine Aggregates\",\"authors\":\"Ping He, Cong Wang, Qiang Zhang, Jing Liu, Hao Lu\",\"doi\":\"10.37358/mp.23.1.5643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe waste recycling of epoxy resin-based fiber reinforced plastics is an important topic of current environmental protection. This work investigated the potential engineering benefits of applying simply crushed recycled epoxy resin-based fiber reinforced plastic in structural concrete. In this paper, the mixing and mechanical properties of concrete products with crushed and recycled waste epoxy plates instead of some fine aggregate were studied experimentally. Three kinds of recycled crushing materials with different particle sizes below 4mm, 4mm to 9mm, and 9mm were used to prepare 10 groups of concrete samples with different proportions by replacing sand with 5, 10, and 15% volumes, respectively. The results showed that the density of the recycled plastic concrete was reduced and the slump of the concrete was increased, with the increase of the recycled crushing materials, and the mechanical properties of concrete were improved within the 5%-10% admixture, and the best results of comprehensive mechanical properties were achieved when the admixture was 10% and the particle size was 4-9mm. These results indicated that it is feasible to replace concrete fine aggregates with recycled crushing materials of waste epoxy plate, and this study not only explores a new way to recycle waste epoxy resin-based fiber reinforced plastic, but also reduces the over-exploitation of sand natural resources, which have a high social and economic value.\\n\",\"PeriodicalId\":18360,\"journal\":{\"name\":\"Materiale Plastice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiale Plastice\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.37358/mp.23.1.5643\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiale Plastice","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37358/mp.23.1.5643","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Performance of Concrete with Recycled Epoxy Plate Waste as aPartial Replacement for Fine Aggregates
The waste recycling of epoxy resin-based fiber reinforced plastics is an important topic of current environmental protection. This work investigated the potential engineering benefits of applying simply crushed recycled epoxy resin-based fiber reinforced plastic in structural concrete. In this paper, the mixing and mechanical properties of concrete products with crushed and recycled waste epoxy plates instead of some fine aggregate were studied experimentally. Three kinds of recycled crushing materials with different particle sizes below 4mm, 4mm to 9mm, and 9mm were used to prepare 10 groups of concrete samples with different proportions by replacing sand with 5, 10, and 15% volumes, respectively. The results showed that the density of the recycled plastic concrete was reduced and the slump of the concrete was increased, with the increase of the recycled crushing materials, and the mechanical properties of concrete were improved within the 5%-10% admixture, and the best results of comprehensive mechanical properties were achieved when the admixture was 10% and the particle size was 4-9mm. These results indicated that it is feasible to replace concrete fine aggregates with recycled crushing materials of waste epoxy plate, and this study not only explores a new way to recycle waste epoxy resin-based fiber reinforced plastic, but also reduces the over-exploitation of sand natural resources, which have a high social and economic value.
期刊介绍:
Materiale Plastice, abbreviated as Mater. Plast., publishes original scientific papers or guest reviews on topics of great interest.
The Journal does not publish memos, technical reports or non-original papers (that are a compiling of literature data) or papers that have been already published in other national or foreign Journal.