基于改进YOLOv5的高效森林火灾目标检测模型

IF 3 3区 农林科学 Q2 ECOLOGY Fire-Switzerland Pub Date : 2023-07-31 DOI:10.3390/fire6080291
Long Zhang, Jiaming Li, Fuquan Zhang
{"title":"基于改进YOLOv5的高效森林火灾目标检测模型","authors":"Long Zhang, Jiaming Li, Fuquan Zhang","doi":"10.3390/fire6080291","DOIUrl":null,"url":null,"abstract":"To tackle the problem of missed detections in long-range detection scenarios caused by the small size of forest fire targets, initiatives have been undertaken to enhance the feature extraction and detection precision of models designed for forest fire imagery. In this study, two algorithms, DenseM-YOLOv5 and SimAM-YOLOv5, were proposed by modifying the backbone network of You Only Look Once version 5 (YOLOv5). From the perspective of lightweight models, compared to YOLOv5, SimAM-YOLOv5 reduced the parameter size by 28.57%. Additionally, although SimAM-YOLOv5 showed a slight decrease in recall rate, it achieved improvements in precision and average precision (AP) to varying degrees. The DenseM-YOLOv5 algorithm achieved a 2.24% increase in precision, as well as improvements of 1.2% in recall rate and 1.52% in AP compared to the YOLOv5 algorithm. Despite having a higher parameter size, the DenseM-YOLOv5 algorithm outperformed the SimAM-YOLOv5 algorithm in terms of precision and AP for forest fire detection.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Forest Fire Target Detection Model Based on Improved YOLOv5\",\"authors\":\"Long Zhang, Jiaming Li, Fuquan Zhang\",\"doi\":\"10.3390/fire6080291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To tackle the problem of missed detections in long-range detection scenarios caused by the small size of forest fire targets, initiatives have been undertaken to enhance the feature extraction and detection precision of models designed for forest fire imagery. In this study, two algorithms, DenseM-YOLOv5 and SimAM-YOLOv5, were proposed by modifying the backbone network of You Only Look Once version 5 (YOLOv5). From the perspective of lightweight models, compared to YOLOv5, SimAM-YOLOv5 reduced the parameter size by 28.57%. Additionally, although SimAM-YOLOv5 showed a slight decrease in recall rate, it achieved improvements in precision and average precision (AP) to varying degrees. The DenseM-YOLOv5 algorithm achieved a 2.24% increase in precision, as well as improvements of 1.2% in recall rate and 1.52% in AP compared to the YOLOv5 algorithm. Despite having a higher parameter size, the DenseM-YOLOv5 algorithm outperformed the SimAM-YOLOv5 algorithm in terms of precision and AP for forest fire detection.\",\"PeriodicalId\":36395,\"journal\":{\"name\":\"Fire-Switzerland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire-Switzerland\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fire6080291\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire-Switzerland","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fire6080291","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决因森林火灾目标规模较小而导致的远程探测场景中的漏检问题,已采取措施提高为森林火灾图像设计的模型的特征提取和探测精度。在本研究中,通过修改YouOnly Look Once版本5(YOLOv5)的骨干网络,提出了两种算法DenseM-YOLOOv5和SimAM-YOLOv5。从轻量化模型的角度来看,与YOLOv5相比,SimAM-YOLOv5将参数大小减少了28.57%。此外,尽管SimAM-YOLOv5的召回率略有下降,但它在精度和平均精度(AP)方面都有不同程度的提高。与YOLOv5算法相比,DenseM-YOOv5算法的精度提高了2.24%,召回率提高了1.2%,AP提高了1.52%。尽管具有更高的参数大小,但DenseM-YOLOv5算法在森林火灾检测的精度和AP方面优于SimAM-YOLOv5算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Forest Fire Target Detection Model Based on Improved YOLOv5
To tackle the problem of missed detections in long-range detection scenarios caused by the small size of forest fire targets, initiatives have been undertaken to enhance the feature extraction and detection precision of models designed for forest fire imagery. In this study, two algorithms, DenseM-YOLOv5 and SimAM-YOLOv5, were proposed by modifying the backbone network of You Only Look Once version 5 (YOLOv5). From the perspective of lightweight models, compared to YOLOv5, SimAM-YOLOv5 reduced the parameter size by 28.57%. Additionally, although SimAM-YOLOv5 showed a slight decrease in recall rate, it achieved improvements in precision and average precision (AP) to varying degrees. The DenseM-YOLOv5 algorithm achieved a 2.24% increase in precision, as well as improvements of 1.2% in recall rate and 1.52% in AP compared to the YOLOv5 algorithm. Despite having a higher parameter size, the DenseM-YOLOv5 algorithm outperformed the SimAM-YOLOv5 algorithm in terms of precision and AP for forest fire detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fire-Switzerland
Fire-Switzerland Multiple-
CiteScore
3.10
自引率
15.60%
发文量
182
审稿时长
11 weeks
期刊最新文献
Fire Risk of Polyethylene (PE)-Based Foam Blocks Used as Interior Building Materials and Fire Suppression through a Simple Surface Coating: Analysis of Vulnerability, Propagation, and Flame Retardancy Experimental Study on Combustion Behavior of U-Shaped Cables with Different Bending Forms and Angles Evaluation of Air Quality inside Self-Contained Breathing Apparatus Used by Firefighters Summer Compound Drought-Heat Extremes Amplify Fire-Weather Risk and Burned Area beyond Historical Thresholds in Chongqing Region, Subtropical China Identification Methodology for Chemical Warehouses Dealing with Flammable Substances Capable of Causing Firewater Pollution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1