Andrew Mastin, Arden Baxter, Amelia Musselman, Jean-Paul Watson
{"title":"最佳反应交叉口:一种拦截防御的最优算法","authors":"Andrew Mastin, Arden Baxter, Amelia Musselman, Jean-Paul Watson","doi":"10.1287/ijoo.2022.0081","DOIUrl":null,"url":null,"abstract":"We define the interdiction defense problem as a game over a set of targets with three stages: a first stage where the defender protects a subset of targets, a second stage where the attacker observes the defense decision and attacks a subset of targets, and a third stage where the defender optimizes a system using only the surviving targets. We present a novel algorithm for optimally solving such problems that uses repeated calls to an attacker’s best response oracle. For cases where the defender can defend at most k targets and the attacker can attack at most z targets, we prove that the algorithm makes at most [Formula: see text] calls to the oracle. In application to the direct current optimal power flow problem, we present a new mixed integer programming formulation with bounded big-M values to function as a best response oracle. We use this oracle along with the algorithm to solve a defender-attacker-defender version of the optimal power flow problem. On standard test instances, we find solutions with larger values of k and z than shown in previous studies and with runtimes that are an order of magnitude faster than column and constraint generation.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Best Response Intersection: An Optimal Algorithm for Interdiction Defense\",\"authors\":\"Andrew Mastin, Arden Baxter, Amelia Musselman, Jean-Paul Watson\",\"doi\":\"10.1287/ijoo.2022.0081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define the interdiction defense problem as a game over a set of targets with three stages: a first stage where the defender protects a subset of targets, a second stage where the attacker observes the defense decision and attacks a subset of targets, and a third stage where the defender optimizes a system using only the surviving targets. We present a novel algorithm for optimally solving such problems that uses repeated calls to an attacker’s best response oracle. For cases where the defender can defend at most k targets and the attacker can attack at most z targets, we prove that the algorithm makes at most [Formula: see text] calls to the oracle. In application to the direct current optimal power flow problem, we present a new mixed integer programming formulation with bounded big-M values to function as a best response oracle. We use this oracle along with the algorithm to solve a defender-attacker-defender version of the optimal power flow problem. On standard test instances, we find solutions with larger values of k and z than shown in previous studies and with runtimes that are an order of magnitude faster than column and constraint generation.\",\"PeriodicalId\":73382,\"journal\":{\"name\":\"INFORMS journal on optimization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS journal on optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/ijoo.2022.0081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2022.0081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Best Response Intersection: An Optimal Algorithm for Interdiction Defense
We define the interdiction defense problem as a game over a set of targets with three stages: a first stage where the defender protects a subset of targets, a second stage where the attacker observes the defense decision and attacks a subset of targets, and a third stage where the defender optimizes a system using only the surviving targets. We present a novel algorithm for optimally solving such problems that uses repeated calls to an attacker’s best response oracle. For cases where the defender can defend at most k targets and the attacker can attack at most z targets, we prove that the algorithm makes at most [Formula: see text] calls to the oracle. In application to the direct current optimal power flow problem, we present a new mixed integer programming formulation with bounded big-M values to function as a best response oracle. We use this oracle along with the algorithm to solve a defender-attacker-defender version of the optimal power flow problem. On standard test instances, we find solutions with larger values of k and z than shown in previous studies and with runtimes that are an order of magnitude faster than column and constraint generation.