Z. Huang, Huaqin Huang, Hao He, Kaixuan Li, Zhaoyang Wu, Rui Wang
{"title":"高频电源用双绝缘层Fe-Si-Cr复合材料的制备及其软磁性能","authors":"Z. Huang, Huaqin Huang, Hao He, Kaixuan Li, Zhaoyang Wu, Rui Wang","doi":"10.3390/magnetochemistry9060145","DOIUrl":null,"url":null,"abstract":"Soft magnetic composites (SMCs) are composed of alloy materials with the core and insulating layers as the shell. These composites exhibit high saturation magnetic sensitivity and low hysteresis loss, making them a promising material for various applications. The investigation of double layers is considered valuable as it can effectively address the issues of low resistivity and high dynamic loss that arise from non-uniform insulating layers in SMCs. In this study, Fe-Si-Cr/SiO2 particles with a core–shell heterostructure were produced via chemical vapor deposition (CVD). The Fe-Si-Cr/SiO2 materials were coated with different weight percentages (1–6%) of sodium silicate (SS). Subsequently, Fe-Si-Cr-based SMCs were synthesized through high-pressure molding and heat treatment. The effect of the SS weight percentage on microscopic changes and magnetic characteristics was investigated. These findings indicated that a concentration of 4 wt% of SS was the most effective at enhancing magnetic characteristics. The resultant SMCs exhibited high resistivity (21.07 mΩ·cm), the lowest total loss (P10 mt/300 kHz of 44.23 W/kg), a relatively high saturation magnetization (181.8 emu/g), and permeability (35.9). Furthermore, it was observed that the permeability exhibited stabilization at lower frequencies. According to these findings, the combination of CVD and double layers could lead to the further development of SMCs in a variety of applications.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and Soft Magnetic Properties of Fe–Si–Cr Composites with Double-Insulating Layers Suitable for High-Frequency Power Applications\",\"authors\":\"Z. Huang, Huaqin Huang, Hao He, Kaixuan Li, Zhaoyang Wu, Rui Wang\",\"doi\":\"10.3390/magnetochemistry9060145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft magnetic composites (SMCs) are composed of alloy materials with the core and insulating layers as the shell. These composites exhibit high saturation magnetic sensitivity and low hysteresis loss, making them a promising material for various applications. The investigation of double layers is considered valuable as it can effectively address the issues of low resistivity and high dynamic loss that arise from non-uniform insulating layers in SMCs. In this study, Fe-Si-Cr/SiO2 particles with a core–shell heterostructure were produced via chemical vapor deposition (CVD). The Fe-Si-Cr/SiO2 materials were coated with different weight percentages (1–6%) of sodium silicate (SS). Subsequently, Fe-Si-Cr-based SMCs were synthesized through high-pressure molding and heat treatment. The effect of the SS weight percentage on microscopic changes and magnetic characteristics was investigated. These findings indicated that a concentration of 4 wt% of SS was the most effective at enhancing magnetic characteristics. The resultant SMCs exhibited high resistivity (21.07 mΩ·cm), the lowest total loss (P10 mt/300 kHz of 44.23 W/kg), a relatively high saturation magnetization (181.8 emu/g), and permeability (35.9). Furthermore, it was observed that the permeability exhibited stabilization at lower frequencies. According to these findings, the combination of CVD and double layers could lead to the further development of SMCs in a variety of applications.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry9060145\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9060145","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Fabrication and Soft Magnetic Properties of Fe–Si–Cr Composites with Double-Insulating Layers Suitable for High-Frequency Power Applications
Soft magnetic composites (SMCs) are composed of alloy materials with the core and insulating layers as the shell. These composites exhibit high saturation magnetic sensitivity and low hysteresis loss, making them a promising material for various applications. The investigation of double layers is considered valuable as it can effectively address the issues of low resistivity and high dynamic loss that arise from non-uniform insulating layers in SMCs. In this study, Fe-Si-Cr/SiO2 particles with a core–shell heterostructure were produced via chemical vapor deposition (CVD). The Fe-Si-Cr/SiO2 materials were coated with different weight percentages (1–6%) of sodium silicate (SS). Subsequently, Fe-Si-Cr-based SMCs were synthesized through high-pressure molding and heat treatment. The effect of the SS weight percentage on microscopic changes and magnetic characteristics was investigated. These findings indicated that a concentration of 4 wt% of SS was the most effective at enhancing magnetic characteristics. The resultant SMCs exhibited high resistivity (21.07 mΩ·cm), the lowest total loss (P10 mt/300 kHz of 44.23 W/kg), a relatively high saturation magnetization (181.8 emu/g), and permeability (35.9). Furthermore, it was observed that the permeability exhibited stabilization at lower frequencies. According to these findings, the combination of CVD and double layers could lead to the further development of SMCs in a variety of applications.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.