{"title":"大任务提前到来:从关键队列到随机图","authors":"G. Bet, R. van der Hofstad, J. V. van Leeuwaarden","doi":"10.1287/stsy.2019.0057","DOIUrl":null,"url":null,"abstract":"We consider a queue to which only a finite pool of n customers can arrive, at times depending on their service requirement. A customer with stochastic service requirement S arrives to the queue after an exponentially distributed time with mean S-αfor some [Formula: see text]; therefore, larger service requirements trigger customers to join earlier. This finite-pool queue interpolates between two previously studied cases: α = 0 gives the so-called [Formula: see text] queue and α = 1 is closely related to the exploration process for inhomogeneous random graphs. We consider the asymptotic regime in which the pool size n grows to infinity and establish that the scaled queue-length process converges to a diffusion process with a negative quadratic drift. We leverage this asymptotic result to characterize the head start that is needed to create a long period of activity. We also describe how this first busy period of the queue gives rise to a critically connected random forest.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1287/stsy.2019.0057","citationCount":"6","resultStr":"{\"title\":\"Big Jobs Arrive Early: From Critical Queues to Random Graphs\",\"authors\":\"G. Bet, R. van der Hofstad, J. V. van Leeuwaarden\",\"doi\":\"10.1287/stsy.2019.0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a queue to which only a finite pool of n customers can arrive, at times depending on their service requirement. A customer with stochastic service requirement S arrives to the queue after an exponentially distributed time with mean S-αfor some [Formula: see text]; therefore, larger service requirements trigger customers to join earlier. This finite-pool queue interpolates between two previously studied cases: α = 0 gives the so-called [Formula: see text] queue and α = 1 is closely related to the exploration process for inhomogeneous random graphs. We consider the asymptotic regime in which the pool size n grows to infinity and establish that the scaled queue-length process converges to a diffusion process with a negative quadratic drift. We leverage this asymptotic result to characterize the head start that is needed to create a long period of activity. We also describe how this first busy period of the queue gives rise to a critically connected random forest.\",\"PeriodicalId\":36337,\"journal\":{\"name\":\"Stochastic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1287/stsy.2019.0057\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/stsy.2019.0057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2019.0057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Big Jobs Arrive Early: From Critical Queues to Random Graphs
We consider a queue to which only a finite pool of n customers can arrive, at times depending on their service requirement. A customer with stochastic service requirement S arrives to the queue after an exponentially distributed time with mean S-αfor some [Formula: see text]; therefore, larger service requirements trigger customers to join earlier. This finite-pool queue interpolates between two previously studied cases: α = 0 gives the so-called [Formula: see text] queue and α = 1 is closely related to the exploration process for inhomogeneous random graphs. We consider the asymptotic regime in which the pool size n grows to infinity and establish that the scaled queue-length process converges to a diffusion process with a negative quadratic drift. We leverage this asymptotic result to characterize the head start that is needed to create a long period of activity. We also describe how this first busy period of the queue gives rise to a critically connected random forest.