A. Bamoniri, B. Mirjalili, Mahnaz Mahmoodi Fard Chegeni
{"title":"以纳米γ-Al2O3/BF3/Fe3O4为磁性纳米催化剂在无溶剂条件下合成3,4-二氢嘧啶类化合物","authors":"A. Bamoniri, B. Mirjalili, Mahnaz Mahmoodi Fard Chegeni","doi":"10.22052/JNS.2020.04.0008","DOIUrl":null,"url":null,"abstract":"Nano-γ-Al2O3/BF3/Fe3O4 magnetic nanoparticles was synthesized and characterized with Fourier Transform Infrared (FT-IR), Powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmittance Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM), Brunauer–Emmett–Teller (BET) and Thermal Gravimetry (TGA). Dihydropyrimidinones (DHP) act as antivirals, antibacterial, antifungal, antiinflammatory, antioxidan, anticarcinogen, calcium channel blockers, antihypertensive, anti-cancer and anti-HIV compounds. Nano-γ-Al2O3/BF3/Fe3O4 magnetic nanoparticles as an efficient catalyst was applied for the mild and green one-pot multicomponent synthesis of 3,4-dihydro pyrimidine-2(1H)-ones/thiones under solvent-free conditions. Biginelli reaction proceeds through an aldehyde, β-keto ester and urea or thiourea to the dihydropyrimidinone. Excellent yields of dihydropyrmidinones are gained within a short reaction time. The proposed method offers several advantages such as short reaction time, high efficiency, smooth purification, cleaning reaction, ease of recovery, and reusable catalyst. The structure and purity of these compounds were confirmed using IR and 1H NMR and 13C NMR spectral analysis. Meanwhile, the physical property of products were compared with reported ones.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"751-759"},"PeriodicalIF":1.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis of 3,4-dihydropyrimidinones using nano γ-Al2O3/BF3/Fe3O4 as an efficient magnetic nanocatalyst under solvent-free conditions\",\"authors\":\"A. Bamoniri, B. Mirjalili, Mahnaz Mahmoodi Fard Chegeni\",\"doi\":\"10.22052/JNS.2020.04.0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nano-γ-Al2O3/BF3/Fe3O4 magnetic nanoparticles was synthesized and characterized with Fourier Transform Infrared (FT-IR), Powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmittance Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM), Brunauer–Emmett–Teller (BET) and Thermal Gravimetry (TGA). Dihydropyrimidinones (DHP) act as antivirals, antibacterial, antifungal, antiinflammatory, antioxidan, anticarcinogen, calcium channel blockers, antihypertensive, anti-cancer and anti-HIV compounds. Nano-γ-Al2O3/BF3/Fe3O4 magnetic nanoparticles as an efficient catalyst was applied for the mild and green one-pot multicomponent synthesis of 3,4-dihydro pyrimidine-2(1H)-ones/thiones under solvent-free conditions. Biginelli reaction proceeds through an aldehyde, β-keto ester and urea or thiourea to the dihydropyrimidinone. Excellent yields of dihydropyrmidinones are gained within a short reaction time. The proposed method offers several advantages such as short reaction time, high efficiency, smooth purification, cleaning reaction, ease of recovery, and reusable catalyst. The structure and purity of these compounds were confirmed using IR and 1H NMR and 13C NMR spectral analysis. Meanwhile, the physical property of products were compared with reported ones.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"10 1\",\"pages\":\"751-759\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2020.04.0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.04.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Synthesis of 3,4-dihydropyrimidinones using nano γ-Al2O3/BF3/Fe3O4 as an efficient magnetic nanocatalyst under solvent-free conditions
Nano-γ-Al2O3/BF3/Fe3O4 magnetic nanoparticles was synthesized and characterized with Fourier Transform Infrared (FT-IR), Powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmittance Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM), Brunauer–Emmett–Teller (BET) and Thermal Gravimetry (TGA). Dihydropyrimidinones (DHP) act as antivirals, antibacterial, antifungal, antiinflammatory, antioxidan, anticarcinogen, calcium channel blockers, antihypertensive, anti-cancer and anti-HIV compounds. Nano-γ-Al2O3/BF3/Fe3O4 magnetic nanoparticles as an efficient catalyst was applied for the mild and green one-pot multicomponent synthesis of 3,4-dihydro pyrimidine-2(1H)-ones/thiones under solvent-free conditions. Biginelli reaction proceeds through an aldehyde, β-keto ester and urea or thiourea to the dihydropyrimidinone. Excellent yields of dihydropyrmidinones are gained within a short reaction time. The proposed method offers several advantages such as short reaction time, high efficiency, smooth purification, cleaning reaction, ease of recovery, and reusable catalyst. The structure and purity of these compounds were confirmed using IR and 1H NMR and 13C NMR spectral analysis. Meanwhile, the physical property of products were compared with reported ones.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.