利用机器学习方法准确预测多孔纤维材料的输运特性

IF 2.9 Q2 ELECTROCHEMISTRY Electrochemical science advances Pub Date : 2022-04-05 DOI:10.1002/elsa.202100185
Taylr Cawte, Aimy Bazylak
{"title":"利用机器学习方法准确预测多孔纤维材料的输运特性","authors":"Taylr Cawte,&nbsp;Aimy Bazylak","doi":"10.1002/elsa.202100185","DOIUrl":null,"url":null,"abstract":"<p>Machine learning algorithms trained on data gathered from stochastically generated gas diffusion layers (GDLs) were used to predict key transport properties that govern effective mass transport behaviour in polymer electrolyte membrane fuel cells. Specifically, we present the largest database in the present literature of stochastically generated fibrous GDL substrates (containing over 2000 unique materials) and the associated structural and transport properties determined via pore network modelling. Seven established machine learning algorithms were trained to predict the effective single-phase permeability (<i>k<sub>sp</sub></i>) and diffusivity (<i>D<sub>sp</sub></i>), and the relative permeability (<i>k<sub>r</sub></i>) and diffusivity (<i>D<sub>r</sub></i>) of the generated materials using well-defined material properties as input features. Gradient boosting regression (GBR), artificial neural network, and support vector regression were the best performing predictors of the single-phase properties, all of which exhibited statistically insignificant differences in error. GBR provided the best prediction accuracy of relative transport properties.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202100185","citationCount":"3","resultStr":"{\"title\":\"Accurately predicting transport properties of porous fibrous materials by machine learning methods\",\"authors\":\"Taylr Cawte,&nbsp;Aimy Bazylak\",\"doi\":\"10.1002/elsa.202100185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning algorithms trained on data gathered from stochastically generated gas diffusion layers (GDLs) were used to predict key transport properties that govern effective mass transport behaviour in polymer electrolyte membrane fuel cells. Specifically, we present the largest database in the present literature of stochastically generated fibrous GDL substrates (containing over 2000 unique materials) and the associated structural and transport properties determined via pore network modelling. Seven established machine learning algorithms were trained to predict the effective single-phase permeability (<i>k<sub>sp</sub></i>) and diffusivity (<i>D<sub>sp</sub></i>), and the relative permeability (<i>k<sub>r</sub></i>) and diffusivity (<i>D<sub>r</sub></i>) of the generated materials using well-defined material properties as input features. Gradient boosting regression (GBR), artificial neural network, and support vector regression were the best performing predictors of the single-phase properties, all of which exhibited statistically insignificant differences in error. GBR provided the best prediction accuracy of relative transport properties.</p>\",\"PeriodicalId\":93746,\"journal\":{\"name\":\"Electrochemical science advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202100185\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical science advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202100185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202100185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 3

摘要

通过对随机生成气体扩散层(gdl)数据的训练,机器学习算法被用于预测聚合物电解质膜燃料电池中控制有效质量传输行为的关键传输特性。具体来说,我们提供了目前文献中最大的随机生成纤维GDL基质数据库(包含超过2000种独特材料)以及通过孔隙网络模型确定的相关结构和传输特性。通过训练七个已建立的机器学习算法来预测生成材料的有效单相磁导率(ksp)和扩散率(Dsp),以及相对磁导率(kr)和扩散率(Dr),并将定义良好的材料属性作为输入特征。梯度增强回归(Gradient boosting regression, GBR)、人工神经网络(artificial neural network)和支持向量回归(support vector regression)是预测单相性能的最佳方法,它们的误差差异在统计学上不显著。GBR对相对输运性质的预测精度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurately predicting transport properties of porous fibrous materials by machine learning methods

Machine learning algorithms trained on data gathered from stochastically generated gas diffusion layers (GDLs) were used to predict key transport properties that govern effective mass transport behaviour in polymer electrolyte membrane fuel cells. Specifically, we present the largest database in the present literature of stochastically generated fibrous GDL substrates (containing over 2000 unique materials) and the associated structural and transport properties determined via pore network modelling. Seven established machine learning algorithms were trained to predict the effective single-phase permeability (ksp) and diffusivity (Dsp), and the relative permeability (kr) and diffusivity (Dr) of the generated materials using well-defined material properties as input features. Gradient boosting regression (GBR), artificial neural network, and support vector regression were the best performing predictors of the single-phase properties, all of which exhibited statistically insignificant differences in error. GBR provided the best prediction accuracy of relative transport properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
High‐Speed AFM Observation of Electrolytic Hydrogen Nanobubbles During Potential Scanning Electrochemical Contributions: Svante August Arrhenius (1859–1927) Electron Transfer Reaction Studies of Usnic Acid and Its Biosynthetic Precursor Methylphloroacetophenone Investigating the kinetics of small alcohol oxidation reactions using platinum supported on a doped niobium suboxide support Round‐robin test of all‐solid‐state battery with sulfide electrolyte assembly in coin‐type cell configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1