{"title":"利用多源数据检测农村废弃房屋","authors":"Chan-Jae Lee","doi":"10.2478/remav-2023-0021","DOIUrl":null,"url":null,"abstract":"Abstract Abandoned houses have become a common feature of the local landscapes: the rising number of abandoned houses is a major challenge facing many counties in South Korea. Their presence negatively influences the neighborhood by undermining its aesthetic quality, depreciating the perception of safety in the neighborhood properties, and deepening the fiscal deficit of local financing. The detection of abandoned houses is the first step toward adequate housing management by local governments. This study aims to provide a cost-effective and prompt approach to identifying abandoned houses in rural areas. Multi-source data, that is, images and building registry data are utilized and a multi-input neural network is designed to adopt these heterogeneous datasets. Trained by the two source datasets, the proposed network achieves 86.2% accuracy in classifying abandoned houses, which is an acceptable performance level in administrative practice. The database of abandoned houses identified in this manner is expected to promote effective housing management by governments and ultimately contribute to mitigating vacancies in rural areas.","PeriodicalId":37812,"journal":{"name":"Real Estate Management and Valuation","volume":"31 1","pages":"58 - 66"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Abandoned Houses in Rural Areas using Multi-Source Data\",\"authors\":\"Chan-Jae Lee\",\"doi\":\"10.2478/remav-2023-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Abandoned houses have become a common feature of the local landscapes: the rising number of abandoned houses is a major challenge facing many counties in South Korea. Their presence negatively influences the neighborhood by undermining its aesthetic quality, depreciating the perception of safety in the neighborhood properties, and deepening the fiscal deficit of local financing. The detection of abandoned houses is the first step toward adequate housing management by local governments. This study aims to provide a cost-effective and prompt approach to identifying abandoned houses in rural areas. Multi-source data, that is, images and building registry data are utilized and a multi-input neural network is designed to adopt these heterogeneous datasets. Trained by the two source datasets, the proposed network achieves 86.2% accuracy in classifying abandoned houses, which is an acceptable performance level in administrative practice. The database of abandoned houses identified in this manner is expected to promote effective housing management by governments and ultimately contribute to mitigating vacancies in rural areas.\",\"PeriodicalId\":37812,\"journal\":{\"name\":\"Real Estate Management and Valuation\",\"volume\":\"31 1\",\"pages\":\"58 - 66\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Estate Management and Valuation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/remav-2023-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Estate Management and Valuation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/remav-2023-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Detecting Abandoned Houses in Rural Areas using Multi-Source Data
Abstract Abandoned houses have become a common feature of the local landscapes: the rising number of abandoned houses is a major challenge facing many counties in South Korea. Their presence negatively influences the neighborhood by undermining its aesthetic quality, depreciating the perception of safety in the neighborhood properties, and deepening the fiscal deficit of local financing. The detection of abandoned houses is the first step toward adequate housing management by local governments. This study aims to provide a cost-effective and prompt approach to identifying abandoned houses in rural areas. Multi-source data, that is, images and building registry data are utilized and a multi-input neural network is designed to adopt these heterogeneous datasets. Trained by the two source datasets, the proposed network achieves 86.2% accuracy in classifying abandoned houses, which is an acceptable performance level in administrative practice. The database of abandoned houses identified in this manner is expected to promote effective housing management by governments and ultimately contribute to mitigating vacancies in rural areas.
期刊介绍:
Real Estate Management and Valuation (REMV) is a journal that publishes new theoretical and practical insights that improve our understanding in the field of real estate valuation, analysis and property management. The aim of the Polish Real Estate Scientific Society (Towarzystwo Naukowe Nieruchomości) is developing and disseminating knowledge about land management and the methods, techniques and principles of real estate valuation and the popularization of scientific achievements in this field, as well as their practical applications in the activities of economic entities.