色素玉米- β-胡萝卜素和α-生育酚的潜在来源

V. Anđelković, Jelena Masarović, M. Srebrić, S. Drinić
{"title":"色素玉米- β-胡萝卜素和α-生育酚的潜在来源","authors":"V. Anđelković, Jelena Masarović, M. Srebrić, S. Drinić","doi":"10.7251/JEPM181002001A","DOIUrl":null,"url":null,"abstract":"Among cereals, maize has the highest content of bioavailable micronutrients in grain, particularly β-carotene and α-tocopherol, which makes this crop the most appropriate for biofortification. Great genetic variability is a valuable source of micronutrients, and genotypes with enhanced grain content could be used for improvement of commercial hybrids or synthetic populations creation. Three populations with dark orange, dark red and red grain, five elite lines, and their crosses were evaluated for β-carotene and α-tocopherol content. Based on obtained results, line (L5) could be further used in breeding for increased β-carotene content, and population with dark orange grain (P1) is recommended as a good source for multi-nutrient biofortification for both β-carotene and α-tocopherol. Three lines (L1, L2 and L5) had significantly higher value of α-tocopherol in crosses with dark red population (P2), compared to lines per se, and require several cycles of back-crossing for increase nutrient content.","PeriodicalId":53038,"journal":{"name":"Journal of Engineering Processing Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pigmented maize - a potential source of β-carotene and α-tocopherol\",\"authors\":\"V. Anđelković, Jelena Masarović, M. Srebrić, S. Drinić\",\"doi\":\"10.7251/JEPM181002001A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among cereals, maize has the highest content of bioavailable micronutrients in grain, particularly β-carotene and α-tocopherol, which makes this crop the most appropriate for biofortification. Great genetic variability is a valuable source of micronutrients, and genotypes with enhanced grain content could be used for improvement of commercial hybrids or synthetic populations creation. Three populations with dark orange, dark red and red grain, five elite lines, and their crosses were evaluated for β-carotene and α-tocopherol content. Based on obtained results, line (L5) could be further used in breeding for increased β-carotene content, and population with dark orange grain (P1) is recommended as a good source for multi-nutrient biofortification for both β-carotene and α-tocopherol. Three lines (L1, L2 and L5) had significantly higher value of α-tocopherol in crosses with dark red population (P2), compared to lines per se, and require several cycles of back-crossing for increase nutrient content.\",\"PeriodicalId\":53038,\"journal\":{\"name\":\"Journal of Engineering Processing Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Processing Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7251/JEPM181002001A\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Processing Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7251/JEPM181002001A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在谷物中,玉米的生物可利用微量营养素含量最高,尤其是β-胡萝卜素和α-生育酚,是最适合生物强化的作物。巨大的遗传变异是微量营养素的宝贵来源,提高籽粒含量的基因型可用于改良商业杂交种或合成群体。以深橙色、深红色和红粒3个群体、5个优良系及其杂交进行了β-胡萝卜素和α-生育酚含量的测定。在此基础上,L5系可进一步用于提高β-胡萝卜素含量的育种,深橙色籽粒(P1)群体可作为β-胡萝卜素和α-生育酚多营养素生物强化的良好来源。深红色群体(P2)杂交的3个品系(L1、L2和L5) α-生育酚含量显著高于品系本身,需要多次回交才能增加营养成分含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pigmented maize - a potential source of β-carotene and α-tocopherol
Among cereals, maize has the highest content of bioavailable micronutrients in grain, particularly β-carotene and α-tocopherol, which makes this crop the most appropriate for biofortification. Great genetic variability is a valuable source of micronutrients, and genotypes with enhanced grain content could be used for improvement of commercial hybrids or synthetic populations creation. Three populations with dark orange, dark red and red grain, five elite lines, and their crosses were evaluated for β-carotene and α-tocopherol content. Based on obtained results, line (L5) could be further used in breeding for increased β-carotene content, and population with dark orange grain (P1) is recommended as a good source for multi-nutrient biofortification for both β-carotene and α-tocopherol. Three lines (L1, L2 and L5) had significantly higher value of α-tocopherol in crosses with dark red population (P2), compared to lines per se, and require several cycles of back-crossing for increase nutrient content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
15 weeks
期刊最新文献
Neural network modeling methods for predicting the air parameters in the city of Tuzla Quality testing of industrially produced essential oil of white pine (Pinus sylvestris L.) from the Republic of Srpska 3D model of a Monolithic Honeycomb Adsorber for Electric Swing Adsorption for Carbon Dioxide Capture Cloud Point Extraction as a Method for Preconcentration of Metal Ions Effects of drilling parameters on TI-6Al-4V alloy using different coolants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1