氟化物污染、毒性及其潜在治疗剂

Q4 Pharmacology, Toxicology and Pharmaceutics Toxicology International Pub Date : 2023-02-07 DOI:10.18311/ti/2022/v29i4/30844
Prem Rajak, Sumedha Roy, S. Khatun, M. Mandi, Abhratanu Ganguly, K. Das, Anik Dutta, Sayantani Nanda, Siddhartha Ghanty, G. Biswas
{"title":"氟化物污染、毒性及其潜在治疗剂","authors":"Prem Rajak, Sumedha Roy, S. Khatun, M. Mandi, Abhratanu Ganguly, K. Das, Anik Dutta, Sayantani Nanda, Siddhartha Ghanty, G. Biswas","doi":"10.18311/ti/2022/v29i4/30844","DOIUrl":null,"url":null,"abstract":"Fluoride is the thirteenth most abundant element in the earth’s crust. It is highly electronegative and distributed ubiquitously in nature. During weathering of rocks and soil, fluoride can leach out and dissolve in the groundwater. Both plants and animals are exposed to several compounds of fluoride through contaminated soil and water. Fluoride contamination in groundwater is a major global concern as groundwater is frequently used for drinking in various parts of the world, especially in developing countries. Fluoride compounds have been reported to impose acute and chronic health hazards. Millions of global populations are suffering from dental and skeletal fluorosis due to high fluoride intake through drinking water. In green vegetation, fluoride accumulation causes necrosis in the tip and marginal portions of leaves. Diverse detrimental effects of fluoride on health have insisted researchers globally to identify compounds having protective potential against fluoride toxicity. Several plant extracts, vitamins, polyphenols, melatonin, hypophyseal proteins, and lycopene have been demonstrated to enhance the antioxidant status and subvert fluoride-induced health hazards in model organisms. However, more studies are required to forward conclusive opinions in terms of the real-life efficacy of these antioxidants against fluoride toxicity.","PeriodicalId":23205,"journal":{"name":"Toxicology International","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fluoride Contamination, Toxicity and its Potential Therapeutic Agents\",\"authors\":\"Prem Rajak, Sumedha Roy, S. Khatun, M. Mandi, Abhratanu Ganguly, K. Das, Anik Dutta, Sayantani Nanda, Siddhartha Ghanty, G. Biswas\",\"doi\":\"10.18311/ti/2022/v29i4/30844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluoride is the thirteenth most abundant element in the earth’s crust. It is highly electronegative and distributed ubiquitously in nature. During weathering of rocks and soil, fluoride can leach out and dissolve in the groundwater. Both plants and animals are exposed to several compounds of fluoride through contaminated soil and water. Fluoride contamination in groundwater is a major global concern as groundwater is frequently used for drinking in various parts of the world, especially in developing countries. Fluoride compounds have been reported to impose acute and chronic health hazards. Millions of global populations are suffering from dental and skeletal fluorosis due to high fluoride intake through drinking water. In green vegetation, fluoride accumulation causes necrosis in the tip and marginal portions of leaves. Diverse detrimental effects of fluoride on health have insisted researchers globally to identify compounds having protective potential against fluoride toxicity. Several plant extracts, vitamins, polyphenols, melatonin, hypophyseal proteins, and lycopene have been demonstrated to enhance the antioxidant status and subvert fluoride-induced health hazards in model organisms. However, more studies are required to forward conclusive opinions in terms of the real-life efficacy of these antioxidants against fluoride toxicity.\",\"PeriodicalId\":23205,\"journal\":{\"name\":\"Toxicology International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/ti/2022/v29i4/30844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/ti/2022/v29i4/30844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 3

摘要

氟化物是地壳中含量第十三丰富的元素。它具有高度的电负性,在自然界中广泛分布。在岩石和土壤风化过程中,氟化物会浸出并溶解在地下水中。植物和动物都会通过受污染的土壤和水接触到几种氟化物化合物。地下水中的氟污染是全球关注的一个主要问题,因为地下水在世界各地,特别是在发展中国家经常被用于饮用。据报道,含氟化合物会对健康造成急性和慢性危害。由于通过饮用水摄入高氟,全球数百万人口正遭受氟牙症和氟骨症的折磨。在绿色植被中,氟化物的积累会导致叶片顶端和边缘部分坏死。氟化物对健康的各种有害影响促使全球研究人员确定对氟化物毒性具有保护潜力的化合物。几种植物提取物、维生素、多酚、褪黑激素、垂体蛋白和番茄红素已被证明可以增强模型生物的抗氧化状态,并消除氟化物引起的健康危害。然而,还需要更多的研究来就这些抗氧化剂对氟化物毒性的实际疗效提出结论性意见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fluoride Contamination, Toxicity and its Potential Therapeutic Agents
Fluoride is the thirteenth most abundant element in the earth’s crust. It is highly electronegative and distributed ubiquitously in nature. During weathering of rocks and soil, fluoride can leach out and dissolve in the groundwater. Both plants and animals are exposed to several compounds of fluoride through contaminated soil and water. Fluoride contamination in groundwater is a major global concern as groundwater is frequently used for drinking in various parts of the world, especially in developing countries. Fluoride compounds have been reported to impose acute and chronic health hazards. Millions of global populations are suffering from dental and skeletal fluorosis due to high fluoride intake through drinking water. In green vegetation, fluoride accumulation causes necrosis in the tip and marginal portions of leaves. Diverse detrimental effects of fluoride on health have insisted researchers globally to identify compounds having protective potential against fluoride toxicity. Several plant extracts, vitamins, polyphenols, melatonin, hypophyseal proteins, and lycopene have been demonstrated to enhance the antioxidant status and subvert fluoride-induced health hazards in model organisms. However, more studies are required to forward conclusive opinions in terms of the real-life efficacy of these antioxidants against fluoride toxicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology International
Toxicology International Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
0.60
自引率
0.00%
发文量
23
期刊介绍: Toxicology International is a peer-reviewed International Research Journal published bi-annually by the Society of Toxicology, India. The Journal is concerned with various disciplines of Toxicology including man, animals, plants and environment and publishes research, review and general articles besides opinions, comments, news-highlights and letters to editor.
期刊最新文献
Toxicological Impact of Nanoparticles on Reproductive System: A Review Studies on Histopathological Alterations in the Brain and Gill, of Cyprinus carpio Exposed to the Insecticide Afidopyropen Green Synthesis of Stable and Reusable Zinc Nanoparticle Adsorbents for the Removal of Carcinogenic Heavy Metals in Aqueous Solution Assessment of Anti-Carcinogenic Potential of Neem (Azadirachta indica) Leaf Extract Loaded Calcium Phosphate Nanoparticles against Experimentally Induced Mammary Carcinogenesis in Rats Role of Phytochemicals against Diabetic Nephropathy: An Insight into Molecular Receptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1