利用FGM概念预测热处理弯头在弯曲和压力载荷下的损伤

IF 1 4区 工程技术 Q4 ENGINEERING, MECHANICAL Journal of Pressure Vessel Technology-Transactions of the Asme Pub Date : 2023-04-17 DOI:10.1115/1.4062336
Fatna Telli, M. Mokhtari, Elamine Abdelouahed, H. Benzaama, Kaoutar Khedim
{"title":"利用FGM概念预测热处理弯头在弯曲和压力载荷下的损伤","authors":"Fatna Telli, M. Mokhtari, Elamine Abdelouahed, H. Benzaama, Kaoutar Khedim","doi":"10.1115/1.4062336","DOIUrl":null,"url":null,"abstract":"\n Elbows in pressurized tubular structures are increasingly stressed by loadings with radial and tangential stresses. These stresses are completely different from those of straight tubular structures. Through the finite element method and using the ABAQUS computer code, the damage of a tubular structure in X60 of an elbow attached by straight parts stressed in internal pressure and in the moment of bending in closing is analyzed in this work. As a proposal for reinforcement, this structure is previously heat-treated and partially at the level of the elbow. The formulation of the heat-treated X60 material is based on the concept of FGM materials (functional graded materials) where the graduation by volume fraction between the metal in its base and that previously heat-affected named HAZ is under a power function of a parameter named volume fraction index (n). The graded properties of HAZ in the base metal along the thickness of the tubular structure are introduced by row of finite elements using a proposed meshing technique. The elastic-plastic behavior of the HAZ-base metal mixture under the Voce model follows the equivalent stress flow theory of Von Mises. Through the use of the XFEM technique in the damage and the mesh proposed in the graduation, in the presence of the internal pressure, of the heat treatment by the graduation and these parameters, condition the response of the structure and the level of their damage.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using FGM Concept to Predict the Damage of Heat Treated Elbows Under Bending and Pressure Loading\",\"authors\":\"Fatna Telli, M. Mokhtari, Elamine Abdelouahed, H. Benzaama, Kaoutar Khedim\",\"doi\":\"10.1115/1.4062336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Elbows in pressurized tubular structures are increasingly stressed by loadings with radial and tangential stresses. These stresses are completely different from those of straight tubular structures. Through the finite element method and using the ABAQUS computer code, the damage of a tubular structure in X60 of an elbow attached by straight parts stressed in internal pressure and in the moment of bending in closing is analyzed in this work. As a proposal for reinforcement, this structure is previously heat-treated and partially at the level of the elbow. The formulation of the heat-treated X60 material is based on the concept of FGM materials (functional graded materials) where the graduation by volume fraction between the metal in its base and that previously heat-affected named HAZ is under a power function of a parameter named volume fraction index (n). The graded properties of HAZ in the base metal along the thickness of the tubular structure are introduced by row of finite elements using a proposed meshing technique. The elastic-plastic behavior of the HAZ-base metal mixture under the Voce model follows the equivalent stress flow theory of Von Mises. Through the use of the XFEM technique in the damage and the mesh proposed in the graduation, in the presence of the internal pressure, of the heat treatment by the graduation and these parameters, condition the response of the structure and the level of their damage.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062336\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062336","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4

摘要

受压管状结构中的弯头受到径向和切向应力载荷的应力越来越大。这些应力与直管结构的应力完全不同。本文采用有限元方法,利用ABAQUS计算机程序,分析了X60弯管直管段在内压和闭合弯曲力矩作用下的损伤情况。作为加固建议,该结构之前经过热处理,部分位于弯头水平面。热处理X60材料的配方基于FGM材料(功能梯度材料)的概念,其中其基体中的金属与先前受热影响的HAZ之间的体积分数分级处于称为体积分数指数(n)的参数的幂函数之下。采用所提出的网格技术,通过一排有限元介绍了母材HAZ沿管状结构厚度的分级特性。Voce模型下HAZ母材混合物的弹塑性行为遵循Von Mises的等效应力流理论。通过在损伤中使用XFEM技术和在分级中提出的网格,在存在内压的情况下,通过分级和这些参数进行热处理,调节结构的响应及其损伤程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using FGM Concept to Predict the Damage of Heat Treated Elbows Under Bending and Pressure Loading
Elbows in pressurized tubular structures are increasingly stressed by loadings with radial and tangential stresses. These stresses are completely different from those of straight tubular structures. Through the finite element method and using the ABAQUS computer code, the damage of a tubular structure in X60 of an elbow attached by straight parts stressed in internal pressure and in the moment of bending in closing is analyzed in this work. As a proposal for reinforcement, this structure is previously heat-treated and partially at the level of the elbow. The formulation of the heat-treated X60 material is based on the concept of FGM materials (functional graded materials) where the graduation by volume fraction between the metal in its base and that previously heat-affected named HAZ is under a power function of a parameter named volume fraction index (n). The graded properties of HAZ in the base metal along the thickness of the tubular structure are introduced by row of finite elements using a proposed meshing technique. The elastic-plastic behavior of the HAZ-base metal mixture under the Voce model follows the equivalent stress flow theory of Von Mises. Through the use of the XFEM technique in the damage and the mesh proposed in the graduation, in the presence of the internal pressure, of the heat treatment by the graduation and these parameters, condition the response of the structure and the level of their damage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
77
审稿时长
4.2 months
期刊介绍: The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards. Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.
期刊最新文献
On The Strength And Tightness Of Asme B16.5 And B16.47 Series A Standard Flanges A Re-Evaluation of Rupture Data for CF8C-Plus Austenitic Stainless Steel Mechanical Properties of Buried Steel Pipe With Polyurethane Isolation Layer Under Strike-Slip Fault An Improved Fixture to Quantify Corrosion in Bolted Flanged Gasketed Joints Methods For Estimating Hydrogen Fuel Tank Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1