John O. Dabiri, Michael F. Howland, Matthew K. Fu, Roni H. Goldshmid
{"title":"用于风的物理推断的视觉风速计","authors":"John O. Dabiri, Michael F. Howland, Matthew K. Fu, Roni H. Goldshmid","doi":"10.1038/s42254-023-00626-8","DOIUrl":null,"url":null,"abstract":"Accurate measurements of atmospheric flows at metre-scale resolution are essential for many sustainability applications, including optimal design of wind and solar farms, navigation and control of air flows in the built environment, monitoring of environmental phenomena such as wildfires and air pollution dispersal, and data assimilation into weather and climate models. Measurement of the relevant multiscale wind flows is inherently challenged by the optical transparency of the wind. This Perspective article explores new ways in which physics can be leveraged to ‘see’ environmental flows non-intrusively, that is, without the need to place measurement instruments directly in the flows of interest. Specifically, although wind itself is transparent, its effect can be seen in the motion of objects embedded in the environment and subjected to wind — swaying trees and flapping flags are commonly encountered examples. We survey emerging efforts to accomplish visual anemometry, the task of quantitatively inferring local wind conditions on the basis of the physics of observed flow–structure interactions. Approaches based on first-principles physics as well as data-driven, machine learning methods will be described, and remaining obstacles to fully generalizable visual anemometry are discussed. Visual anemometry measures winds using observations of associated environmental flow–structure interactions such as swaying trees and flapping flags. This Perspective article outlines opportunities for physics and data science to further develop visual anemometry for renewable energy, urban sustainability and environmental science.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"5 10","pages":"597-611"},"PeriodicalIF":44.8000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual anemometry for physics-informed inference of wind\",\"authors\":\"John O. Dabiri, Michael F. Howland, Matthew K. Fu, Roni H. Goldshmid\",\"doi\":\"10.1038/s42254-023-00626-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate measurements of atmospheric flows at metre-scale resolution are essential for many sustainability applications, including optimal design of wind and solar farms, navigation and control of air flows in the built environment, monitoring of environmental phenomena such as wildfires and air pollution dispersal, and data assimilation into weather and climate models. Measurement of the relevant multiscale wind flows is inherently challenged by the optical transparency of the wind. This Perspective article explores new ways in which physics can be leveraged to ‘see’ environmental flows non-intrusively, that is, without the need to place measurement instruments directly in the flows of interest. Specifically, although wind itself is transparent, its effect can be seen in the motion of objects embedded in the environment and subjected to wind — swaying trees and flapping flags are commonly encountered examples. We survey emerging efforts to accomplish visual anemometry, the task of quantitatively inferring local wind conditions on the basis of the physics of observed flow–structure interactions. Approaches based on first-principles physics as well as data-driven, machine learning methods will be described, and remaining obstacles to fully generalizable visual anemometry are discussed. Visual anemometry measures winds using observations of associated environmental flow–structure interactions such as swaying trees and flapping flags. This Perspective article outlines opportunities for physics and data science to further develop visual anemometry for renewable energy, urban sustainability and environmental science.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"5 10\",\"pages\":\"597-611\"},\"PeriodicalIF\":44.8000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-023-00626-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-023-00626-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Visual anemometry for physics-informed inference of wind
Accurate measurements of atmospheric flows at metre-scale resolution are essential for many sustainability applications, including optimal design of wind and solar farms, navigation and control of air flows in the built environment, monitoring of environmental phenomena such as wildfires and air pollution dispersal, and data assimilation into weather and climate models. Measurement of the relevant multiscale wind flows is inherently challenged by the optical transparency of the wind. This Perspective article explores new ways in which physics can be leveraged to ‘see’ environmental flows non-intrusively, that is, without the need to place measurement instruments directly in the flows of interest. Specifically, although wind itself is transparent, its effect can be seen in the motion of objects embedded in the environment and subjected to wind — swaying trees and flapping flags are commonly encountered examples. We survey emerging efforts to accomplish visual anemometry, the task of quantitatively inferring local wind conditions on the basis of the physics of observed flow–structure interactions. Approaches based on first-principles physics as well as data-driven, machine learning methods will be described, and remaining obstacles to fully generalizable visual anemometry are discussed. Visual anemometry measures winds using observations of associated environmental flow–structure interactions such as swaying trees and flapping flags. This Perspective article outlines opportunities for physics and data science to further develop visual anemometry for renewable energy, urban sustainability and environmental science.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.