不同冠层叶面积和作物负荷下苹果年新梢生长对激光雷达扫描叶面积果比的响应

IF 2 4区 农林科学 Q2 AGRONOMY International Agrophysics Pub Date : 2022-07-13 DOI:10.31545/intagr/150761
M. Penzel, Nikos Tsoulias
{"title":"不同冠层叶面积和作物负荷下苹果年新梢生长对激光雷达扫描叶面积果比的响应","authors":"M. Penzel, Nikos Tsoulias","doi":"10.31545/intagr/150761","DOIUrl":null,"url":null,"abstract":"The of this Abstract. In tree fruit crops, the crop load is one factor that has an influence on the vegetative growth of the trees. However, since trees vary in leaf area and associated fruit bearing capacity, the number of fruit per tree alone is not sufficient to predict their vegetative growth. In the present study, it was investigated whether the leaf area to fruit ratio of trees variable in size and crop load, measured automatically with a LiDAR laser scanner, have an influence on growth properties of the annual shoots. Canopy leaf area, the number of fruit per tree and the leaf area to fruit ratio of apple trees from two commercial apple orchards of the cultivar 'Gala' grown on sandy soils were scanned with a LiDAR laser scanner over a two-year period (n=12 trees per orchard and year). Additionally, the amount of carbon partitioned to fruit and annual shoot growth was quantified for each tree in both years (n=36). No correlation between the number of fruit per tree and the canopy leaf area alone to the amount of carbon partitioned to annual shoot growth was found in both orchards. However, the carbon partitioned to fruit correlated to the leaf area to fruit ratio, while the amount of carbon partitioned to the annual shoot growth was only correlated to the leaf area to fruit ratio in the young orchard. The inter-tree variability in shoot properties has been described. Nevertheless, it was found that the leaf area to fruit ratio is a weak indicator for shoot properties in apple trees, especially in the mature orchards.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Annual shoot growth on apple trees with variable canopy leaf area and crop load in response to LiDAR scanned leaf area to fruit ratio\",\"authors\":\"M. Penzel, Nikos Tsoulias\",\"doi\":\"10.31545/intagr/150761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The of this Abstract. In tree fruit crops, the crop load is one factor that has an influence on the vegetative growth of the trees. However, since trees vary in leaf area and associated fruit bearing capacity, the number of fruit per tree alone is not sufficient to predict their vegetative growth. In the present study, it was investigated whether the leaf area to fruit ratio of trees variable in size and crop load, measured automatically with a LiDAR laser scanner, have an influence on growth properties of the annual shoots. Canopy leaf area, the number of fruit per tree and the leaf area to fruit ratio of apple trees from two commercial apple orchards of the cultivar 'Gala' grown on sandy soils were scanned with a LiDAR laser scanner over a two-year period (n=12 trees per orchard and year). Additionally, the amount of carbon partitioned to fruit and annual shoot growth was quantified for each tree in both years (n=36). No correlation between the number of fruit per tree and the canopy leaf area alone to the amount of carbon partitioned to annual shoot growth was found in both orchards. However, the carbon partitioned to fruit correlated to the leaf area to fruit ratio, while the amount of carbon partitioned to the annual shoot growth was only correlated to the leaf area to fruit ratio in the young orchard. The inter-tree variability in shoot properties has been described. Nevertheless, it was found that the leaf area to fruit ratio is a weak indicator for shoot properties in apple trees, especially in the mature orchards.\",\"PeriodicalId\":13959,\"journal\":{\"name\":\"International Agrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Agrophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.31545/intagr/150761\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Agrophysics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31545/intagr/150761","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 3

摘要

本摘要的。在果树作物中,作物负荷是影响树木营养生长的一个因素。然而,由于树木的叶面积和相关的结实能力各不相同,单凭每棵树的果实数量不足以预测其营养生长。在本研究中,研究了用激光雷达激光扫描仪自动测量的大小和作物负荷可变的树木的叶面积与果实比是否对年梢的生长特性产生影响。用激光雷达激光扫描仪对生长在沙质土壤上的“Gala”品种的两个商业苹果园的树冠叶面积、每棵树的果实数以及苹果树的叶面积与果实比进行了为期两年的扫描(每个果园和年份n=12棵树)。此外,对两年中每棵树分配给果实和年梢生长的碳量进行了量化(n=36)。在这两个果园中,每棵树的果实数量和冠层叶面积与分配给年梢生长的碳量之间没有相关性。然而,在幼龄果园中,分配给果实的碳与叶面积与果实比相关,而分配给年梢生长的碳量仅与叶面积和果实比相关。已经描述了枝条特性的树间变异性。然而,研究发现,叶面积与果实的比例是衡量苹果树枝条特性的一个薄弱指标,尤其是在成熟果园。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Annual shoot growth on apple trees with variable canopy leaf area and crop load in response to LiDAR scanned leaf area to fruit ratio
The of this Abstract. In tree fruit crops, the crop load is one factor that has an influence on the vegetative growth of the trees. However, since trees vary in leaf area and associated fruit bearing capacity, the number of fruit per tree alone is not sufficient to predict their vegetative growth. In the present study, it was investigated whether the leaf area to fruit ratio of trees variable in size and crop load, measured automatically with a LiDAR laser scanner, have an influence on growth properties of the annual shoots. Canopy leaf area, the number of fruit per tree and the leaf area to fruit ratio of apple trees from two commercial apple orchards of the cultivar 'Gala' grown on sandy soils were scanned with a LiDAR laser scanner over a two-year period (n=12 trees per orchard and year). Additionally, the amount of carbon partitioned to fruit and annual shoot growth was quantified for each tree in both years (n=36). No correlation between the number of fruit per tree and the canopy leaf area alone to the amount of carbon partitioned to annual shoot growth was found in both orchards. However, the carbon partitioned to fruit correlated to the leaf area to fruit ratio, while the amount of carbon partitioned to the annual shoot growth was only correlated to the leaf area to fruit ratio in the young orchard. The inter-tree variability in shoot properties has been described. Nevertheless, it was found that the leaf area to fruit ratio is a weak indicator for shoot properties in apple trees, especially in the mature orchards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Agrophysics
International Agrophysics 农林科学-农艺学
CiteScore
3.60
自引率
9.10%
发文量
27
审稿时长
3 months
期刊介绍: The journal is focused on the soil-plant-atmosphere system. The journal publishes original research and review papers on any subject regarding soil, plant and atmosphere and the interface in between. Manuscripts on postharvest processing and quality of crops are also welcomed. Particularly the journal is focused on the following areas: implications of agricultural land use, soil management and climate change on production of biomass and renewable energy, soil structure, cycling of carbon, water, heat and nutrients, biota, greenhouse gases and environment, soil-plant-atmosphere continuum and ways of its regulation to increase efficiency of water, energy and chemicals in agriculture, postharvest management and processing of agricultural and horticultural products in relation to food quality and safety, mathematical modeling of physical processes affecting environment quality, plant production and postharvest processing, advances in sensors and communication devices to measure and collect information about physical conditions in agricultural and natural environments. Papers accepted in the International Agrophysics should reveal substantial novelty and include thoughtful physical, biological and chemical interpretation and accurate description of the methods used. All manuscripts are initially checked on topic suitability and linguistic quality.
期刊最新文献
Machine learning-based soil aggregation assessment under four scenarios in northwestern Iran Evaluation of the changes in Bekker's parameters and their use in determining the rolling resistance Study of wheat (Triticum aestivum L.) seed rehydration observed by the Dent generalized model and 1H-NMR relaxometry Investigation of vegetation dynamics with a focus on agricultural land cover and its relation with meteorological parameters based on the remote sensing techniques: a case study of the Gavkhoni watershed Vis/NIR and FTIR spectroscopy supported by machine learning techniques to distinguish pure from impure Iranian rice varieties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1