Marwa Mostafa Moharam, Ayat Nasr El Shazly, Kabali Vijai Anand, Diaa EL-Rahman Ahmed Rayan, Mustafa K. A. Mohammed, Mohamed Mohamed Rashad, Ahmed Esmail Shalan
{"title":"半导体作为染料敏化太阳能电池的有效电极","authors":"Marwa Mostafa Moharam, Ayat Nasr El Shazly, Kabali Vijai Anand, Diaa EL-Rahman Ahmed Rayan, Mustafa K. A. Mohammed, Mohamed Mohamed Rashad, Ahmed Esmail Shalan","doi":"10.1007/s41061-021-00334-w","DOIUrl":null,"url":null,"abstract":"<p>As proficient photovoltaic devices, dye-sensitized solar cells (DSSCs) have received considerable consideration in recent years. In order to accomplish advanced solar-to-electricity efficiency and increase long-term functioning stability, improvements in the configuration structure of DSSCs are essential, as is an understanding of their elementary principles. This work discusses the application of different semiconductor constituents designed for effective DSSCs. The main parameters crucial to fabrication of DSSC electrodes in nano-porous semiconductor structures are high surface area and large pore size. Different inorganic semiconductor materials are used to load sensitizer dyes, which absorb a lot of light and induce high photocurrent for efficient DSSCs. The first section of the review covers energy sources, photovoltaics, and the benefits of solar cells in daily life, while the second part includes the various types of semiconductors applied in DSSC applications. The final section provides a brief review of future perspectives for DSSCs and a survey of semiconductor materials proposed for solar cell applications.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00334-w","citationCount":"34","resultStr":"{\"title\":\"Semiconductors as Effective Electrodes for Dye Sensitized Solar Cell Applications\",\"authors\":\"Marwa Mostafa Moharam, Ayat Nasr El Shazly, Kabali Vijai Anand, Diaa EL-Rahman Ahmed Rayan, Mustafa K. A. Mohammed, Mohamed Mohamed Rashad, Ahmed Esmail Shalan\",\"doi\":\"10.1007/s41061-021-00334-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As proficient photovoltaic devices, dye-sensitized solar cells (DSSCs) have received considerable consideration in recent years. In order to accomplish advanced solar-to-electricity efficiency and increase long-term functioning stability, improvements in the configuration structure of DSSCs are essential, as is an understanding of their elementary principles. This work discusses the application of different semiconductor constituents designed for effective DSSCs. The main parameters crucial to fabrication of DSSC electrodes in nano-porous semiconductor structures are high surface area and large pore size. Different inorganic semiconductor materials are used to load sensitizer dyes, which absorb a lot of light and induce high photocurrent for efficient DSSCs. The first section of the review covers energy sources, photovoltaics, and the benefits of solar cells in daily life, while the second part includes the various types of semiconductors applied in DSSC applications. The final section provides a brief review of future perspectives for DSSCs and a survey of semiconductor materials proposed for solar cell applications.</p>\",\"PeriodicalId\":54344,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41061-021-00334-w\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-021-00334-w\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-021-00334-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Semiconductors as Effective Electrodes for Dye Sensitized Solar Cell Applications
As proficient photovoltaic devices, dye-sensitized solar cells (DSSCs) have received considerable consideration in recent years. In order to accomplish advanced solar-to-electricity efficiency and increase long-term functioning stability, improvements in the configuration structure of DSSCs are essential, as is an understanding of their elementary principles. This work discusses the application of different semiconductor constituents designed for effective DSSCs. The main parameters crucial to fabrication of DSSC electrodes in nano-porous semiconductor structures are high surface area and large pore size. Different inorganic semiconductor materials are used to load sensitizer dyes, which absorb a lot of light and induce high photocurrent for efficient DSSCs. The first section of the review covers energy sources, photovoltaics, and the benefits of solar cells in daily life, while the second part includes the various types of semiconductors applied in DSSC applications. The final section provides a brief review of future perspectives for DSSCs and a survey of semiconductor materials proposed for solar cell applications.
期刊介绍:
Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.