Jacob P. Youngblood, Arianne J. Cease, Stav Talal, Fernando Copa, Hector E. Medina, Julio E. Rojas, Eduardo V. Trumper, Michael J. Angilletta Jr., Jon F. Harrison
{"title":"气候变化预计将提高蝗虫的消化率并引发蝗虫活动范围的扩大","authors":"Jacob P. Youngblood, Arianne J. Cease, Stav Talal, Fernando Copa, Hector E. Medina, Julio E. Rojas, Eduardo V. Trumper, Michael J. Angilletta Jr., Jon F. Harrison","doi":"10.1002/ecm.1550","DOIUrl":null,"url":null,"abstract":"<p>Global climate change will probably exacerbate crop losses from insect pests, reducing agricultural production, and threatening food security. To predict where crop losses will occur, scientists have mainly used correlative models of species' distributions, but such models are unreliable when extrapolated to future environments. To minimize extrapolation, we developed mechanistic and hybrid models that explicitly capture range-limiting processes, and we explored how incorporating mechanisms altered the projected impacts of climate change for an agricultural pest, the South American locust (<i>Schistocerca cancellata</i>). Because locusts are generalist herbivores surrounded by food, their population growth may be limited by thermal effects on digestion more than food availability. To incorporate this mechanism into a distribution model, we measured the thermal effects on the consumption and defecation of field-captured locusts and used these data to model energy gain in current and future climates. We then created hybrid models by using outputs of the mechanistic model as predictor variables in correlative models, estimating the potential distribution of gregarious outbreaking locusts based on multiple predictor sets, modeling algorithms, and climate scenarios. Based on the mechanistic model, locusts can assimilate relatively high amounts of energy throughout temperate and tropical South America; however, correlative and hybrid modeling revealed that most tropical areas are unsuitable for locusts. When estimating current distributions, the top-ranked model was always the one fit with mechanistic predictors (i.e., the hybrid model). When projected to future climates, top-ranked hybrid models projected range expansions that were 23%–30% points smaller than those projected by correlative models. Therefore, a combination of the correlative and mechanistic approaches bracketed the potential outcomes of climate change and enhanced confidence where model projections agreed. Because all models projected a poleward range expansion under climate change, agriculturists should consider enhanced monitoring and the management of locusts near the southern margin of the range.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Climate change expected to improve digestive rate and trigger range expansion in outbreaking locusts\",\"authors\":\"Jacob P. Youngblood, Arianne J. Cease, Stav Talal, Fernando Copa, Hector E. Medina, Julio E. Rojas, Eduardo V. Trumper, Michael J. Angilletta Jr., Jon F. Harrison\",\"doi\":\"10.1002/ecm.1550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global climate change will probably exacerbate crop losses from insect pests, reducing agricultural production, and threatening food security. To predict where crop losses will occur, scientists have mainly used correlative models of species' distributions, but such models are unreliable when extrapolated to future environments. To minimize extrapolation, we developed mechanistic and hybrid models that explicitly capture range-limiting processes, and we explored how incorporating mechanisms altered the projected impacts of climate change for an agricultural pest, the South American locust (<i>Schistocerca cancellata</i>). Because locusts are generalist herbivores surrounded by food, their population growth may be limited by thermal effects on digestion more than food availability. To incorporate this mechanism into a distribution model, we measured the thermal effects on the consumption and defecation of field-captured locusts and used these data to model energy gain in current and future climates. We then created hybrid models by using outputs of the mechanistic model as predictor variables in correlative models, estimating the potential distribution of gregarious outbreaking locusts based on multiple predictor sets, modeling algorithms, and climate scenarios. Based on the mechanistic model, locusts can assimilate relatively high amounts of energy throughout temperate and tropical South America; however, correlative and hybrid modeling revealed that most tropical areas are unsuitable for locusts. When estimating current distributions, the top-ranked model was always the one fit with mechanistic predictors (i.e., the hybrid model). When projected to future climates, top-ranked hybrid models projected range expansions that were 23%–30% points smaller than those projected by correlative models. Therefore, a combination of the correlative and mechanistic approaches bracketed the potential outcomes of climate change and enhanced confidence where model projections agreed. Because all models projected a poleward range expansion under climate change, agriculturists should consider enhanced monitoring and the management of locusts near the southern margin of the range.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1550\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1550","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Climate change expected to improve digestive rate and trigger range expansion in outbreaking locusts
Global climate change will probably exacerbate crop losses from insect pests, reducing agricultural production, and threatening food security. To predict where crop losses will occur, scientists have mainly used correlative models of species' distributions, but such models are unreliable when extrapolated to future environments. To minimize extrapolation, we developed mechanistic and hybrid models that explicitly capture range-limiting processes, and we explored how incorporating mechanisms altered the projected impacts of climate change for an agricultural pest, the South American locust (Schistocerca cancellata). Because locusts are generalist herbivores surrounded by food, their population growth may be limited by thermal effects on digestion more than food availability. To incorporate this mechanism into a distribution model, we measured the thermal effects on the consumption and defecation of field-captured locusts and used these data to model energy gain in current and future climates. We then created hybrid models by using outputs of the mechanistic model as predictor variables in correlative models, estimating the potential distribution of gregarious outbreaking locusts based on multiple predictor sets, modeling algorithms, and climate scenarios. Based on the mechanistic model, locusts can assimilate relatively high amounts of energy throughout temperate and tropical South America; however, correlative and hybrid modeling revealed that most tropical areas are unsuitable for locusts. When estimating current distributions, the top-ranked model was always the one fit with mechanistic predictors (i.e., the hybrid model). When projected to future climates, top-ranked hybrid models projected range expansions that were 23%–30% points smaller than those projected by correlative models. Therefore, a combination of the correlative and mechanistic approaches bracketed the potential outcomes of climate change and enhanced confidence where model projections agreed. Because all models projected a poleward range expansion under climate change, agriculturists should consider enhanced monitoring and the management of locusts near the southern margin of the range.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.