Hari Surrisyad, A. Yazid
{"title":"APLIKASI JARINGAN SYARAF TIRUAN DALAM PENGENALAN POLA HURUF PEGON JAWA","authors":"Hari Surrisyad, A. Yazid","doi":"10.14421/JISKA.2018.31-04","DOIUrl":null,"url":null,"abstract":"Artificial Neural Network (ANN) Technology) can help humans in processing data into information with design resembling the performance of the human brain. ANN adopts 5 aspects of human capability: Memorization, Generalization, Efficiency, Accuracy, and Tolerance in its application. ANN proves to be effective in pattern recognition. Researchers developed an application implementing ANN to recognize Java Pegon Letter pattern. The research uses 160 image data, divided into 100 training data (consisting of 5 normal images for each character) and 60 test data (consisting of 1 normal data, 1 data is not complete/corrupt, and 1 data with noise) for each character. The data obtained from the processed captures, so all of data have the same dimensions and size: 100x100 pixels. All data is processed through preprocessing and extraction stages. Furthermore, the data result is used in training stage to recognize the pattern of Java Pegon by applying the Learning Vector Quantization method. The application can recognize Java pegon pattern very well. The application can recognize 100% of training data and test data. This application also has the ability to recognize abnormal data very well, such as data with noise or corrupted data.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/JISKA.2018.31-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工神经网络(ANN)技术可以帮助人类以类似于人类大脑的设计将数据处理成信息。人工神经网络在应用中采用了人类5个方面的能力:记忆能力、泛化能力、效率能力、准确性和容错能力。事实证明,人工神经网络在模式识别方面是有效的。研究人员开发了一种基于人工神经网络的Java Pegon字母模式识别应用。本研究使用160张图像数据,每个字符分为100张训练数据(每字符5张正常图像)和60张测试数据(每字符1张正常数据、1张不完整/损坏数据和1张带噪声数据)。从经过处理的捕获中获得的数据,因此所有数据都具有相同的维度和大小:100x100像素。所有数据经过预处理和提取两个阶段处理。在训练阶段,应用学习向量量化方法,将数据结果用于Java Pegon的模式识别。该应用程序可以很好地识别Java多边形模式。该应用程序可以100%识别训练数据和测试数据。该应用程序还能够很好地识别异常数据,例如带有噪声或损坏数据的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
APLIKASI JARINGAN SYARAF TIRUAN DALAM PENGENALAN POLA HURUF PEGON JAWA
Artificial Neural Network (ANN) Technology) can help humans in processing data into information with design resembling the performance of the human brain. ANN adopts 5 aspects of human capability: Memorization, Generalization, Efficiency, Accuracy, and Tolerance in its application. ANN proves to be effective in pattern recognition. Researchers developed an application implementing ANN to recognize Java Pegon Letter pattern. The research uses 160 image data, divided into 100 training data (consisting of 5 normal images for each character) and 60 test data (consisting of 1 normal data, 1 data is not complete/corrupt, and 1 data with noise) for each character. The data obtained from the processed captures, so all of data have the same dimensions and size: 100x100 pixels. All data is processed through preprocessing and extraction stages. Furthermore, the data result is used in training stage to recognize the pattern of Java Pegon by applying the Learning Vector Quantization method. The application can recognize Java pegon pattern very well. The application can recognize 100% of training data and test data. This application also has the ability to recognize abnormal data very well, such as data with noise or corrupted data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
期刊最新文献
Pemodelan Proses Bisnis Kuliah Online MOOCs menggunakan BPMN (Studi Kasus alison.com) Analisis Bibliometrik Publikasi Isu Kebocoran Data Menggunakan VOSviewer Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Klasifikasi Tingkat Kerusakan Sektor Pasca Bencana Alam Menggunakan Metode MULTIMOORA Berbasis Web Pembuatan Ergonomic Mechanical Keyboard untuk Mengurangi Cidera Tangan Menggunakan Teknologi Arduino
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1