{"title":"基于布朗运动和Fokker-Plank方程的原Born-Kramers-Slater反应动力学模型的各种扩展,包括1D, 2D, 3D和多维方法","authors":"Michael Fundator","doi":"10.17265/1934-7375/2017.03.002","DOIUrl":null,"url":null,"abstract":"Different extensions, such as Transition State theory of Eyring-Polanyi-Evans model of the original Born-Kramers-Slater Model for the Velocity of Chemical Reactions are discussed based on Smoluchowski and Fokker-Plank equations with various properties of Brownian motion and including 1-, 2-, 3-, and multidimensional models with applications in Neuroscience.","PeriodicalId":67212,"journal":{"name":"化学与化工:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Various Extensions of Original Born-Kramers-Slater Model for Reactions Kinetics Based on Brownian Motion and Fokker-Plank Equation Including 1D, 2D, 3D, and Multi-dimensional Approaches\",\"authors\":\"Michael Fundator\",\"doi\":\"10.17265/1934-7375/2017.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different extensions, such as Transition State theory of Eyring-Polanyi-Evans model of the original Born-Kramers-Slater Model for the Velocity of Chemical Reactions are discussed based on Smoluchowski and Fokker-Plank equations with various properties of Brownian motion and including 1-, 2-, 3-, and multidimensional models with applications in Neuroscience.\",\"PeriodicalId\":67212,\"journal\":{\"name\":\"化学与化工:英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"化学与化工:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.17265/1934-7375/2017.03.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"化学与化工:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.17265/1934-7375/2017.03.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Various Extensions of Original Born-Kramers-Slater Model for Reactions Kinetics Based on Brownian Motion and Fokker-Plank Equation Including 1D, 2D, 3D, and Multi-dimensional Approaches
Different extensions, such as Transition State theory of Eyring-Polanyi-Evans model of the original Born-Kramers-Slater Model for the Velocity of Chemical Reactions are discussed based on Smoluchowski and Fokker-Plank equations with various properties of Brownian motion and including 1-, 2-, 3-, and multidimensional models with applications in Neuroscience.