胶体光刻技术在低成本和可扩展传感器方面的前景

IF 2.3 Q3 NANOSCIENCE & NANOTECHNOLOGY IEEE Nanotechnology Magazine Pub Date : 2022-10-01 DOI:10.1109/MNANO.2022.3195102
A. Purwidyantri, B. Prabowo
{"title":"胶体光刻技术在低成本和可扩展传感器方面的前景","authors":"A. Purwidyantri, B. Prabowo","doi":"10.1109/MNANO.2022.3195102","DOIUrl":null,"url":null,"abstract":"Nanosphere lithography (NSL), a colloidal-based nanopatterning technique, has demonstrated versatility for bottom-up and top-down nanofabrication approaches with a simple procedure that can be performed in a standard chemical laboratory. This technique offers versatility for large-area nanopatterning with a low-cost process. Nanopatterned arrays have shown outstanding features in enhancing sensor performance due to their ability to create effective nanoscale physical and chemical changes, high molecular entrapment with the roughened substrate, and means of downscaling toward scalable sensors manufacturing. All these prominent properties have made NSL a promising candidate for scalable biosensors production as its performance is also highly comparable with the pre-existing lithography techniques that mostly require high-cost infrastructure. This mini-review discusses in detail the advantages of colloidal lithography over other lithography techniques from the resolution and scalability of manufacturing. It is emphasized that the cost-competitive NSL technology may be applicable for a broad range of end-users, from high-profit margins, such as communication, technology, and health sectors, to the low-profit margins, such as in food industries. The combinational strategies in NSL are presented, including polystyrene nanotemplating of the substrate, feasible integration with metallic film deposition technologies, and potential application in various sensing platforms.","PeriodicalId":44724,"journal":{"name":"IEEE Nanotechnology Magazine","volume":"16 1","pages":"20-28"},"PeriodicalIF":2.3000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Prospects of Colloidal Lithography Towards Low-Cost and Scalable Sensors\",\"authors\":\"A. Purwidyantri, B. Prabowo\",\"doi\":\"10.1109/MNANO.2022.3195102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanosphere lithography (NSL), a colloidal-based nanopatterning technique, has demonstrated versatility for bottom-up and top-down nanofabrication approaches with a simple procedure that can be performed in a standard chemical laboratory. This technique offers versatility for large-area nanopatterning with a low-cost process. Nanopatterned arrays have shown outstanding features in enhancing sensor performance due to their ability to create effective nanoscale physical and chemical changes, high molecular entrapment with the roughened substrate, and means of downscaling toward scalable sensors manufacturing. All these prominent properties have made NSL a promising candidate for scalable biosensors production as its performance is also highly comparable with the pre-existing lithography techniques that mostly require high-cost infrastructure. This mini-review discusses in detail the advantages of colloidal lithography over other lithography techniques from the resolution and scalability of manufacturing. It is emphasized that the cost-competitive NSL technology may be applicable for a broad range of end-users, from high-profit margins, such as communication, technology, and health sectors, to the low-profit margins, such as in food industries. The combinational strategies in NSL are presented, including polystyrene nanotemplating of the substrate, feasible integration with metallic film deposition technologies, and potential application in various sensing platforms.\",\"PeriodicalId\":44724,\"journal\":{\"name\":\"IEEE Nanotechnology Magazine\",\"volume\":\"16 1\",\"pages\":\"20-28\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nanotechnology Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNANO.2022.3195102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nanotechnology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNANO.2022.3195102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Nanosphere lithography(NSL)是一种基于胶体的纳米图案化技术,通过一个可以在标准化学实验室中执行的简单程序,已经证明了自下而上和自上而下的纳米制造方法的多功能性。该技术以低成本工艺为大面积纳米图案化提供了多功能性。纳米图案阵列在增强传感器性能方面表现出了突出的特点,因为它们能够产生有效的纳米级物理和化学变化,用粗糙的基底包裹高分子,以及向可扩展的传感器制造方向缩小规模的手段。所有这些突出的特性使NSL成为可扩展生物传感器生产的一个有前途的候选者,因为它的性能也与先前存在的光刻技术高度可比,这些技术大多需要高成本的基础设施。这篇小型综述从制造的分辨率和可扩展性详细讨论了胶体光刻相对于其他光刻技术的优势。有人强调,具有成本竞争力的NSL技术可能适用于广泛的最终用户,从通信、技术和卫生部门等高利润率到食品行业等低利润率。介绍了NSL中的组合策略,包括基板的聚苯乙烯纳米模板、与金属膜沉积技术的可行集成,以及在各种传感平台中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Prospects of Colloidal Lithography Towards Low-Cost and Scalable Sensors
Nanosphere lithography (NSL), a colloidal-based nanopatterning technique, has demonstrated versatility for bottom-up and top-down nanofabrication approaches with a simple procedure that can be performed in a standard chemical laboratory. This technique offers versatility for large-area nanopatterning with a low-cost process. Nanopatterned arrays have shown outstanding features in enhancing sensor performance due to their ability to create effective nanoscale physical and chemical changes, high molecular entrapment with the roughened substrate, and means of downscaling toward scalable sensors manufacturing. All these prominent properties have made NSL a promising candidate for scalable biosensors production as its performance is also highly comparable with the pre-existing lithography techniques that mostly require high-cost infrastructure. This mini-review discusses in detail the advantages of colloidal lithography over other lithography techniques from the resolution and scalability of manufacturing. It is emphasized that the cost-competitive NSL technology may be applicable for a broad range of end-users, from high-profit margins, such as communication, technology, and health sectors, to the low-profit margins, such as in food industries. The combinational strategies in NSL are presented, including polystyrene nanotemplating of the substrate, feasible integration with metallic film deposition technologies, and potential application in various sensing platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Nanotechnology Magazine
IEEE Nanotechnology Magazine NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.90
自引率
6.20%
发文量
46
期刊介绍: IEEE Nanotechnology Magazine publishes peer-reviewed articles that present emerging trends and practices in industrial electronics product research and development, key insights, and tutorial surveys in the field of interest to the member societies of the IEEE Nanotechnology Council. IEEE Nanotechnology Magazine will be limited to the scope of the Nanotechnology Council, which supports the theory, design, and development of nanotechnology and its scientific, engineering, and industrial applications.
期刊最新文献
Guest Editorial [Guest Editorial] The MENED Program at Nanotechnology Council [Column] The Editors’ Desk [Editor's Desk] President's Farewell Message [President's Farewell Message] 2023 Index IEEE Nanotechnology Magazine Vol. 17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1