{"title":"中央风险账簿中delta套期保值的Leland模型","authors":"Johannes Muhle-Karbe, Zexin Wang, Kevin Webster","doi":"10.1111/mafi.12395","DOIUrl":null,"url":null,"abstract":"<p>Using a tractable extension of the model of Leland (1985), we study how a delta-hedging strategy can realistically be implemented using market <i>and</i> limit orders in a centralized, automated market-making desk that integrates trading and liquidity provision for both options and their underlyings. In the continuous-time limit, the optimal limit-order exposure can be computed explicitly by a <i>pointwise</i> maximization. It is determined by the relative magnitudes of adverse selection, bid–ask spreads, and volatilities. The corresponding option price—from which the option can be replicated using market and limit orders—is characterized via a nonlinear PDE. Our results highlight the benefit of tactical liquidity provision for contrarian trading strategies, even for a trading desk that is not a competitive market maker. More generally, the paper also showcases how reduced-form models are competitive with “brute force” numerical approaches to market microstructure. Both the estimation of microstructure parameters and the simulation of the optimal trading strategy are made concrete and reconciled with real-life high frequency data.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"33 3","pages":"504-547"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12395","citationCount":"0","resultStr":"{\"title\":\"A Leland model for delta hedging in central risk books\",\"authors\":\"Johannes Muhle-Karbe, Zexin Wang, Kevin Webster\",\"doi\":\"10.1111/mafi.12395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using a tractable extension of the model of Leland (1985), we study how a delta-hedging strategy can realistically be implemented using market <i>and</i> limit orders in a centralized, automated market-making desk that integrates trading and liquidity provision for both options and their underlyings. In the continuous-time limit, the optimal limit-order exposure can be computed explicitly by a <i>pointwise</i> maximization. It is determined by the relative magnitudes of adverse selection, bid–ask spreads, and volatilities. The corresponding option price—from which the option can be replicated using market and limit orders—is characterized via a nonlinear PDE. Our results highlight the benefit of tactical liquidity provision for contrarian trading strategies, even for a trading desk that is not a competitive market maker. More generally, the paper also showcases how reduced-form models are competitive with “brute force” numerical approaches to market microstructure. Both the estimation of microstructure parameters and the simulation of the optimal trading strategy are made concrete and reconciled with real-life high frequency data.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":\"33 3\",\"pages\":\"504-547\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12395\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12395\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12395","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
A Leland model for delta hedging in central risk books
Using a tractable extension of the model of Leland (1985), we study how a delta-hedging strategy can realistically be implemented using market and limit orders in a centralized, automated market-making desk that integrates trading and liquidity provision for both options and their underlyings. In the continuous-time limit, the optimal limit-order exposure can be computed explicitly by a pointwise maximization. It is determined by the relative magnitudes of adverse selection, bid–ask spreads, and volatilities. The corresponding option price—from which the option can be replicated using market and limit orders—is characterized via a nonlinear PDE. Our results highlight the benefit of tactical liquidity provision for contrarian trading strategies, even for a trading desk that is not a competitive market maker. More generally, the paper also showcases how reduced-form models are competitive with “brute force” numerical approaches to market microstructure. Both the estimation of microstructure parameters and the simulation of the optimal trading strategy are made concrete and reconciled with real-life high frequency data.
期刊介绍:
Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems.
The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.