E. Beisel, N. Frank, L. Robinson, Marleen Lausecker, R. Friedrich, S. Therre, A. Schröder‐Ritzrau, M. Butzin
{"title":"过去32000年东大西洋气候诱导的温跃层老化和通风","authors":"E. Beisel, N. Frank, L. Robinson, Marleen Lausecker, R. Friedrich, S. Therre, A. Schröder‐Ritzrau, M. Butzin","doi":"10.1029/2023PA004662","DOIUrl":null,"url":null,"abstract":"The radiocarbon analysis of uranium‐thorium‐dated cold‐water corals (CWCs) provides an excellent opportunity for qualitative reconstruction of past ocean circulation and water mass aging. While mid‐depth water mass aging has been studied in the Atlantic Ocean, the evolution of the thermocline is still largely unknown. Here we present a combined 14C and 230Th/U age record obtained from thermocline dwelling CWCs at various sites in the eastern Atlantic Ocean, with intermittently centennial resolution over the last 32 ka. Shallow dwelling CWCs off Angola, located in the South Atlantic, infer a link between the mid‐depth equatorial Atlantic and Southern Ocean. They confirm a 14C drawdown during the Last Glacial Maximum (LGM) and advocate for a consistent Southern Hemisphere radiocarbon aging of upper thermocline waters, as well as strong depth gradients and high variability. Direct comparison with 14C simulations carried out with an Ocean General Circulation Model yield good agreement for Angola. In contrast, the North Atlantic thermocline shows well‐ventilated water with strong variations near the position of today's Azores Front (AF), neither of which are captured by the model. During the Bølling‐Allerød, we confirm the important role of the AF in separating North and South Atlantic thermocline waters and provide further evidence of a 500 year long deep convection interruption within the Younger Dryas (YD). We conclude that the North and South Atlantic thermocline waters were separately acting carbon reservoirs during the LGM and subsequent deglaciation until the modern circulation was established during the YD.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate Induced Thermocline Aging and Ventilation in the Eastern Atlantic Over the Last 32,000 Years\",\"authors\":\"E. Beisel, N. Frank, L. Robinson, Marleen Lausecker, R. Friedrich, S. Therre, A. Schröder‐Ritzrau, M. Butzin\",\"doi\":\"10.1029/2023PA004662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radiocarbon analysis of uranium‐thorium‐dated cold‐water corals (CWCs) provides an excellent opportunity for qualitative reconstruction of past ocean circulation and water mass aging. While mid‐depth water mass aging has been studied in the Atlantic Ocean, the evolution of the thermocline is still largely unknown. Here we present a combined 14C and 230Th/U age record obtained from thermocline dwelling CWCs at various sites in the eastern Atlantic Ocean, with intermittently centennial resolution over the last 32 ka. Shallow dwelling CWCs off Angola, located in the South Atlantic, infer a link between the mid‐depth equatorial Atlantic and Southern Ocean. They confirm a 14C drawdown during the Last Glacial Maximum (LGM) and advocate for a consistent Southern Hemisphere radiocarbon aging of upper thermocline waters, as well as strong depth gradients and high variability. Direct comparison with 14C simulations carried out with an Ocean General Circulation Model yield good agreement for Angola. In contrast, the North Atlantic thermocline shows well‐ventilated water with strong variations near the position of today's Azores Front (AF), neither of which are captured by the model. During the Bølling‐Allerød, we confirm the important role of the AF in separating North and South Atlantic thermocline waters and provide further evidence of a 500 year long deep convection interruption within the Younger Dryas (YD). We conclude that the North and South Atlantic thermocline waters were separately acting carbon reservoirs during the LGM and subsequent deglaciation until the modern circulation was established during the YD.\",\"PeriodicalId\":54239,\"journal\":{\"name\":\"Paleoceanography and Paleoclimatology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography and Paleoclimatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023PA004662\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023PA004662","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Climate Induced Thermocline Aging and Ventilation in the Eastern Atlantic Over the Last 32,000 Years
The radiocarbon analysis of uranium‐thorium‐dated cold‐water corals (CWCs) provides an excellent opportunity for qualitative reconstruction of past ocean circulation and water mass aging. While mid‐depth water mass aging has been studied in the Atlantic Ocean, the evolution of the thermocline is still largely unknown. Here we present a combined 14C and 230Th/U age record obtained from thermocline dwelling CWCs at various sites in the eastern Atlantic Ocean, with intermittently centennial resolution over the last 32 ka. Shallow dwelling CWCs off Angola, located in the South Atlantic, infer a link between the mid‐depth equatorial Atlantic and Southern Ocean. They confirm a 14C drawdown during the Last Glacial Maximum (LGM) and advocate for a consistent Southern Hemisphere radiocarbon aging of upper thermocline waters, as well as strong depth gradients and high variability. Direct comparison with 14C simulations carried out with an Ocean General Circulation Model yield good agreement for Angola. In contrast, the North Atlantic thermocline shows well‐ventilated water with strong variations near the position of today's Azores Front (AF), neither of which are captured by the model. During the Bølling‐Allerød, we confirm the important role of the AF in separating North and South Atlantic thermocline waters and provide further evidence of a 500 year long deep convection interruption within the Younger Dryas (YD). We conclude that the North and South Atlantic thermocline waters were separately acting carbon reservoirs during the LGM and subsequent deglaciation until the modern circulation was established during the YD.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.