新型5,6,7,8-四氢喹唑啉-2(1H)- 1衍生物的可持续合成、生态安全方法效率和DFT研究

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY Indonesian Journal of Chemistry Pub Date : 2023-08-15 DOI:10.22146/ijc.83583
Mohammed Abed Kadhim, A. Fahmy, E. K. M. Zangana, A. I. Hassaballah, S. Rizk
{"title":"新型5,6,7,8-四氢喹唑啉-2(1H)- 1衍生物的可持续合成、生态安全方法效率和DFT研究","authors":"Mohammed Abed Kadhim, A. Fahmy, E. K. M. Zangana, A. I. Hassaballah, S. Rizk","doi":"10.22146/ijc.83583","DOIUrl":null,"url":null,"abstract":"5,6,7,8-Tetrahydroquinazolin-2-(thio)-ones (THQ) fits the class of N-heterocycles as a structural core in numerous bioactive compounds. They promptly extended previous decades. They were significantly recognized in combinatorial chemistry and materials science to determine the drug discovery, antioxidants, and pharmaceuticals fields. In the present work, one-pot multicomponent sustainable synthesis of THQ with easily accessible starting materials, i.e., cyclohexanone, different aromatic aldehydes and (thio)urea, has been performed to determine the proposed Biginelli mechanism that is supported by DFT. It is found that the THQs are synthesized by a mechano-chemical (grinding) tool to achieve a yield of 85.2% within 3.5 min, i.e., YE (% yield/time) 24.34 differs from the conventional method in which lower % yield (YE = 0.72) of THQ was achieved. This confirmed that in the green chemistry principle, the determination of % yield according to saving reaction time must be considered. Moreover, DFT-based antioxidant properties of the THQ were also studied in which the most potent antioxidant compounds were 7b > 6d > 2f. Softness (σ, eV−1) and hardness (η, eV mol−1) can approve the soft molecule that stays more reactive as a result of decreasing the energy gap along heterocyclic with values 0.1491 > 0.1300 > 0.1168 eV−1 one-to-one with the efficiency of antioxidant.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sustainable synthesis, eco-safe approach efficiency and DFT study of novel 5,6,7,8-Tetrahyroquinazolin-2(1H)-one derivatives as antioxidant reagents\",\"authors\":\"Mohammed Abed Kadhim, A. Fahmy, E. K. M. Zangana, A. I. Hassaballah, S. Rizk\",\"doi\":\"10.22146/ijc.83583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"5,6,7,8-Tetrahydroquinazolin-2-(thio)-ones (THQ) fits the class of N-heterocycles as a structural core in numerous bioactive compounds. They promptly extended previous decades. They were significantly recognized in combinatorial chemistry and materials science to determine the drug discovery, antioxidants, and pharmaceuticals fields. In the present work, one-pot multicomponent sustainable synthesis of THQ with easily accessible starting materials, i.e., cyclohexanone, different aromatic aldehydes and (thio)urea, has been performed to determine the proposed Biginelli mechanism that is supported by DFT. It is found that the THQs are synthesized by a mechano-chemical (grinding) tool to achieve a yield of 85.2% within 3.5 min, i.e., YE (% yield/time) 24.34 differs from the conventional method in which lower % yield (YE = 0.72) of THQ was achieved. This confirmed that in the green chemistry principle, the determination of % yield according to saving reaction time must be considered. Moreover, DFT-based antioxidant properties of the THQ were also studied in which the most potent antioxidant compounds were 7b > 6d > 2f. Softness (σ, eV−1) and hardness (η, eV mol−1) can approve the soft molecule that stays more reactive as a result of decreasing the energy gap along heterocyclic with values 0.1491 > 0.1300 > 0.1168 eV−1 one-to-one with the efficiency of antioxidant.\",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.83583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.83583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

5,6,7,8-四氢喹唑啉-2-(硫代)-酮(THQ)属于N-杂环类,是许多生物活性化合物的结构核心。他们迅速地延长了之前的几十年。它们在组合化学和材料科学中得到了显著的认可,以确定药物发现、抗氧化剂和药物领域。在本工作中,以环己酮、不同芳香醛和(硫代)脲为原料,一锅多组分可持续合成THQ,以确定DFT支持的Biginelli机理。发现通过机械化学(研磨)工具合成THQ以在3.5分钟内实现85.2%的产率,即YE(%产率/时间)24.34不同于实现THQ的较低%产率(YE=0.72)的传统方法。这证实了在绿色化学原理中,必须考虑根据节省反应时间来确定%产率。此外,还研究了THQ基于DFT的抗氧化性能,其中最有效的抗氧化化合物为7b>6d>2f。柔软度(σ,eV−1)和硬度(η,eV mol−1)可以证明软分子由于沿杂环的能隙减小而保持更具反应性,其值0.1491>0.1300>0.1168 eV−2与抗氧化剂的效率一一对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Sustainable synthesis, eco-safe approach efficiency and DFT study of novel 5,6,7,8-Tetrahyroquinazolin-2(1H)-one derivatives as antioxidant reagents
5,6,7,8-Tetrahydroquinazolin-2-(thio)-ones (THQ) fits the class of N-heterocycles as a structural core in numerous bioactive compounds. They promptly extended previous decades. They were significantly recognized in combinatorial chemistry and materials science to determine the drug discovery, antioxidants, and pharmaceuticals fields. In the present work, one-pot multicomponent sustainable synthesis of THQ with easily accessible starting materials, i.e., cyclohexanone, different aromatic aldehydes and (thio)urea, has been performed to determine the proposed Biginelli mechanism that is supported by DFT. It is found that the THQs are synthesized by a mechano-chemical (grinding) tool to achieve a yield of 85.2% within 3.5 min, i.e., YE (% yield/time) 24.34 differs from the conventional method in which lower % yield (YE = 0.72) of THQ was achieved. This confirmed that in the green chemistry principle, the determination of % yield according to saving reaction time must be considered. Moreover, DFT-based antioxidant properties of the THQ were also studied in which the most potent antioxidant compounds were 7b > 6d > 2f. Softness (σ, eV−1) and hardness (η, eV mol−1) can approve the soft molecule that stays more reactive as a result of decreasing the energy gap along heterocyclic with values 0.1491 > 0.1300 > 0.1168 eV−1 one-to-one with the efficiency of antioxidant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indonesian Journal of Chemistry
Indonesian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
106
审稿时长
15 weeks
期刊介绍: Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.
期刊最新文献
Black Tea Waste as Corrosion Inhibitor for Carbon Steel in 0.5 M HCl Medium Synthesis, Thermal, DFT Calculations, HOMO-LUMO, MEP, and Molecular Docking Analysis of New Derivatives of Imidazolin-4-Ones Involvement of Fenton Reaction on Biodecolorization and Biodegradation of Methylene Blue Dye by Brown Rot Fungi Daedalea dickinsii Integration of Copperas and Moringa oleifera Seeds as Hybrid Coagulant for Turbidity and Ammonia Removal from Aquaculture Wastewater Synthesis and Characterization of Oligomer Bis(trans-2,3-dibromo-4-hydroxy-2-butenyl)terephthalate as a Green Corrosion Inhibitor on Mild Steel in 1 M H3PO4 Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1