N. Arsat, J. Jaafar, W. Lau, M. Othman, Mukhlis A. Rahman, F. Aziz, N. Yusof, W. Salleh, A. Ismail
{"title":"聚乙烯醇在静电纺纳米纤维上交联制备正向渗透膜的物理研究","authors":"N. Arsat, J. Jaafar, W. Lau, M. Othman, Mukhlis A. Rahman, F. Aziz, N. Yusof, W. Salleh, A. Ismail","doi":"10.22079/JMSR.2020.117738.1310","DOIUrl":null,"url":null,"abstract":"The conventional nanofiber-supported forward osmosis (FO) membrane possessed some issues, for example, easy deformation and weak interfacial strength between the substrate and selective layer. A dual-layered composite membrane consists of electrospun nanofibrous membranes (ENMs) as the support layer and cross-linked polyvinyl alcohol (PVA) top coating as the active layer is fabricated. Hence, the objective of this work is to study the physical properties of the prepared PVA/ polyvinylidene fluoride (PVDF) composite membranes. The novelty of this work relies on the new exploitation of the prepared dual-layered thin film nanofibrous composite (TFNC) membranes via the cross-linked technique in the FO process. The experiment works include the fabrication of nanofibrous substrates and selective layer via electrospinning, followed by the PVA cross-linking process prior to the characterisation studies and FO evaluation. FO performance test revealed a comparable water flux with the conventional dual-layered composite membrane, besides exhibited a significantly low Js /Jw ratio. This study indicated that dual-layered cross-linked PVA on electrospun PVDF nanofibers is a promising approach to overcome the drawback of the existing issues in the conventional method of preparing surface coated composite membranes which is a viable option to manufacture high-performance TFNC-FO membranes.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"359-366"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Physical Studies of Forward Osmosis Membranes Prepared by Cross-linking Polyvinyl Alcohol on Electrospun Nanofibers\",\"authors\":\"N. Arsat, J. Jaafar, W. Lau, M. Othman, Mukhlis A. Rahman, F. Aziz, N. Yusof, W. Salleh, A. Ismail\",\"doi\":\"10.22079/JMSR.2020.117738.1310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional nanofiber-supported forward osmosis (FO) membrane possessed some issues, for example, easy deformation and weak interfacial strength between the substrate and selective layer. A dual-layered composite membrane consists of electrospun nanofibrous membranes (ENMs) as the support layer and cross-linked polyvinyl alcohol (PVA) top coating as the active layer is fabricated. Hence, the objective of this work is to study the physical properties of the prepared PVA/ polyvinylidene fluoride (PVDF) composite membranes. The novelty of this work relies on the new exploitation of the prepared dual-layered thin film nanofibrous composite (TFNC) membranes via the cross-linked technique in the FO process. The experiment works include the fabrication of nanofibrous substrates and selective layer via electrospinning, followed by the PVA cross-linking process prior to the characterisation studies and FO evaluation. FO performance test revealed a comparable water flux with the conventional dual-layered composite membrane, besides exhibited a significantly low Js /Jw ratio. This study indicated that dual-layered cross-linked PVA on electrospun PVDF nanofibers is a promising approach to overcome the drawback of the existing issues in the conventional method of preparing surface coated composite membranes which is a viable option to manufacture high-performance TFNC-FO membranes.\",\"PeriodicalId\":16427,\"journal\":{\"name\":\"Journal of Membrane Science and Research\",\"volume\":\"6 1\",\"pages\":\"359-366\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22079/JMSR.2020.117738.1310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2020.117738.1310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Physical Studies of Forward Osmosis Membranes Prepared by Cross-linking Polyvinyl Alcohol on Electrospun Nanofibers
The conventional nanofiber-supported forward osmosis (FO) membrane possessed some issues, for example, easy deformation and weak interfacial strength between the substrate and selective layer. A dual-layered composite membrane consists of electrospun nanofibrous membranes (ENMs) as the support layer and cross-linked polyvinyl alcohol (PVA) top coating as the active layer is fabricated. Hence, the objective of this work is to study the physical properties of the prepared PVA/ polyvinylidene fluoride (PVDF) composite membranes. The novelty of this work relies on the new exploitation of the prepared dual-layered thin film nanofibrous composite (TFNC) membranes via the cross-linked technique in the FO process. The experiment works include the fabrication of nanofibrous substrates and selective layer via electrospinning, followed by the PVA cross-linking process prior to the characterisation studies and FO evaluation. FO performance test revealed a comparable water flux with the conventional dual-layered composite membrane, besides exhibited a significantly low Js /Jw ratio. This study indicated that dual-layered cross-linked PVA on electrospun PVDF nanofibers is a promising approach to overcome the drawback of the existing issues in the conventional method of preparing surface coated composite membranes which is a viable option to manufacture high-performance TFNC-FO membranes.
期刊介绍:
The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.