新加坡对流尺度数值天气预报系统

Xiangyu Huang, D. Barker, S. Webster, A. Dipankar, A. Lock, M. Mittermaier, Xiangming Sun, R. North, Rob Darvell, D. F. Boyd, J. C. Lo, Jianyu Liu, B. Macpherson, P. Heng, A. Maycock, Laura Pitcher, R. Tubbs, M. McMillan, Sijin Zhang, S. Hagelin, A. Porson, G. Song, Becky Beckett, W. Cheong, A. Semple, C. Gordon
{"title":"新加坡对流尺度数值天气预报系统","authors":"Xiangyu Huang, D. Barker, S. Webster, A. Dipankar, A. Lock, M. Mittermaier, Xiangming Sun, R. North, Rob Darvell, D. F. Boyd, J. C. Lo, Jianyu Liu, B. Macpherson, P. Heng, A. Maycock, Laura Pitcher, R. Tubbs, M. McMillan, Sijin Zhang, S. Hagelin, A. Porson, G. Song, Becky Beckett, W. Cheong, A. Semple, C. Gordon","doi":"10.29037/ajstd.581","DOIUrl":null,"url":null,"abstract":"Extreme rainfall is one of the primary meteorological hazards in Singapore, as well as elsewhere in the deep tropics, and it can lead to significant local flooding. Since 2013, the Meteorological Service Singapore (MSS) and the United Kingdom Met Office (UKMO) have been collaborating to develop a convective-scale Numerical Weather Prediction (NWP) system, called SINGV. Its primary aim is to provide improved weather forecasts for Singapore and the surrounding region, with a focus on improved short-range prediction of localized heavy rainfall. This paper provides an overview of the SINGV development, the latest NWP capabilities at MSS and some key results of evaluation. The paper describes science advances relevant to the development of any km-scale NWP suitable for the deep tropics and provides some insights into the impact of local data assimilation and utility of ensemble predictions.","PeriodicalId":8479,"journal":{"name":"Asean Journal on Science and Technology for Development","volume":"36 1","pages":"81–90-81–90"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"SINGV – the Convective-Scale Numerical Weather Prediction System for Singapore\",\"authors\":\"Xiangyu Huang, D. Barker, S. Webster, A. Dipankar, A. Lock, M. Mittermaier, Xiangming Sun, R. North, Rob Darvell, D. F. Boyd, J. C. Lo, Jianyu Liu, B. Macpherson, P. Heng, A. Maycock, Laura Pitcher, R. Tubbs, M. McMillan, Sijin Zhang, S. Hagelin, A. Porson, G. Song, Becky Beckett, W. Cheong, A. Semple, C. Gordon\",\"doi\":\"10.29037/ajstd.581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme rainfall is one of the primary meteorological hazards in Singapore, as well as elsewhere in the deep tropics, and it can lead to significant local flooding. Since 2013, the Meteorological Service Singapore (MSS) and the United Kingdom Met Office (UKMO) have been collaborating to develop a convective-scale Numerical Weather Prediction (NWP) system, called SINGV. Its primary aim is to provide improved weather forecasts for Singapore and the surrounding region, with a focus on improved short-range prediction of localized heavy rainfall. This paper provides an overview of the SINGV development, the latest NWP capabilities at MSS and some key results of evaluation. The paper describes science advances relevant to the development of any km-scale NWP suitable for the deep tropics and provides some insights into the impact of local data assimilation and utility of ensemble predictions.\",\"PeriodicalId\":8479,\"journal\":{\"name\":\"Asean Journal on Science and Technology for Development\",\"volume\":\"36 1\",\"pages\":\"81–90-81–90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asean Journal on Science and Technology for Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29037/ajstd.581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asean Journal on Science and Technology for Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29037/ajstd.581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 15

摘要

极端降雨是新加坡以及其他热带地区的主要气象灾害之一,它可能导致严重的局部洪水。自2013年以来,新加坡气象局(MSS)和英国气象局(UKMO)一直在合作开发一个名为SINGV的对流尺度数值天气预报(NWP)系统。它的主要目的是为新加坡及周边地区提供改进的天气预报,重点是改进局部强降雨的短期预报。本文介绍了SINGV的发展概况、MSS最新的NWP能力以及一些关键的评估结果。本文描述了与任何适合热带深处的千米尺度NWP发展相关的科学进展,并对局部数据同化的影响和集合预测的效用提供了一些见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SINGV – the Convective-Scale Numerical Weather Prediction System for Singapore
Extreme rainfall is one of the primary meteorological hazards in Singapore, as well as elsewhere in the deep tropics, and it can lead to significant local flooding. Since 2013, the Meteorological Service Singapore (MSS) and the United Kingdom Met Office (UKMO) have been collaborating to develop a convective-scale Numerical Weather Prediction (NWP) system, called SINGV. Its primary aim is to provide improved weather forecasts for Singapore and the surrounding region, with a focus on improved short-range prediction of localized heavy rainfall. This paper provides an overview of the SINGV development, the latest NWP capabilities at MSS and some key results of evaluation. The paper describes science advances relevant to the development of any km-scale NWP suitable for the deep tropics and provides some insights into the impact of local data assimilation and utility of ensemble predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asean Journal on Science and Technology for Development
Asean Journal on Science and Technology for Development Environmental Science-Waste Management and Disposal
CiteScore
1.50
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊最新文献
The effect of biochar from plant materials on agricultural acid sulfate soil: a laboratory incubation Development of Halalan Tayyiban Plant-Based Cheese Formulations Physicochemical Characterization of Edible Insect Oils: Insights into Fatty Acid Composition, Thermal Behavior and Quality Parameters Unveiling the Antioxidant Properties of Stenochlaena Palustris and Diplazium Esculentum through Time-Dependent Analysis Assessing the Organic Acids-solubilized Collagen Derived from the Skin of Unicornfish (Naso reticulatus Randall, 2011) on Physicochemical and Structural Characteristics: Toward Alternative Source for Industrial Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1