未充分利用杉木木粉填充热塑性复合材料的物理力学性能

IF 0.7 4区 农林科学 Q4 MATERIALS SCIENCE, PAPER & WOOD Drvna Industrija Pub Date : 2022-11-15 DOI:10.5552/drvind.2022.2128
N. Ayrilmiş, E. Yildiz
{"title":"未充分利用杉木木粉填充热塑性复合材料的物理力学性能","authors":"N. Ayrilmiş, E. Yildiz","doi":"10.5552/drvind.2022.2128","DOIUrl":null,"url":null,"abstract":"The potential use of a lignocellulosic filler, Vitex agnus-castus plant (Chaste tree), which is a deciduous invasive shrub, in thermoplastic composites was investigated. The stems of chaste trees with a diameter of 5-10 cm from Mugla city, Western Turkey, were used for the study. The different amounts (0 to 50 wt%, by 10 % increments) of the wood flour passing through the screen openings of 0.237 mm were added to the polypropylene matrix. Premixed raw materials were put into the volumetric feeder of the twin-screw extruder. The extruder barrel temperature was gradually increased from 170 °C (feeding zone) to the die zone (190 °C) at a constant screw speed (40 rpm). Then, the dried granules were hot-pressed into the 4 mm thick WPC panels at 2 MPa and 190 °C for 5 min. 3 wt% of maleic anhydride grafted polypropylene (MAPP) was added as compatibilizer into the formulation. The WPCs showed an increase in the thickness swelling (0.58 to 5.68 %) as the amount of the filler increased from 10 to 50 wt% in the polypropylene. The bending strength of the polypropylene composites increased from 33.9 to 44.8 MPa as the amount of the chaste wood flour was increased to 30 wt%, but further increase caused the decrease in the tensile strength (25.7 MPa). As for the bending modulus, it increased from 815 to 3250 MPa when the wood content reached 50 wt%. The tensile modulus increased from 1690 to 2253 MPa when the wood content arised from 10 to 50 wt%. The tensile strength, tensile modulus, flexural strength and flexural modulus of the unfilled polypropylene were found to be 19.6 MPa, 1505 MPa, 30.2 MPa and 664 MPa, respectively. According to the test results, it was concluded that the 30-40 wt% of Vitex agnus-castus wood could be efficiently used in the polypropylene composites for the semi-building applications such as decking or siding. The evaluation of underused invasive chaste wood in the production of tWPC production may result in an effective way to utilize this resource.","PeriodicalId":11427,"journal":{"name":"Drvna Industrija","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical and Mechanical Properties of Thermoplastic Composites Filled with Wood Flour of Underutilized Chaste Tree\",\"authors\":\"N. Ayrilmiş, E. Yildiz\",\"doi\":\"10.5552/drvind.2022.2128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential use of a lignocellulosic filler, Vitex agnus-castus plant (Chaste tree), which is a deciduous invasive shrub, in thermoplastic composites was investigated. The stems of chaste trees with a diameter of 5-10 cm from Mugla city, Western Turkey, were used for the study. The different amounts (0 to 50 wt%, by 10 % increments) of the wood flour passing through the screen openings of 0.237 mm were added to the polypropylene matrix. Premixed raw materials were put into the volumetric feeder of the twin-screw extruder. The extruder barrel temperature was gradually increased from 170 °C (feeding zone) to the die zone (190 °C) at a constant screw speed (40 rpm). Then, the dried granules were hot-pressed into the 4 mm thick WPC panels at 2 MPa and 190 °C for 5 min. 3 wt% of maleic anhydride grafted polypropylene (MAPP) was added as compatibilizer into the formulation. The WPCs showed an increase in the thickness swelling (0.58 to 5.68 %) as the amount of the filler increased from 10 to 50 wt% in the polypropylene. The bending strength of the polypropylene composites increased from 33.9 to 44.8 MPa as the amount of the chaste wood flour was increased to 30 wt%, but further increase caused the decrease in the tensile strength (25.7 MPa). As for the bending modulus, it increased from 815 to 3250 MPa when the wood content reached 50 wt%. The tensile modulus increased from 1690 to 2253 MPa when the wood content arised from 10 to 50 wt%. The tensile strength, tensile modulus, flexural strength and flexural modulus of the unfilled polypropylene were found to be 19.6 MPa, 1505 MPa, 30.2 MPa and 664 MPa, respectively. According to the test results, it was concluded that the 30-40 wt% of Vitex agnus-castus wood could be efficiently used in the polypropylene composites for the semi-building applications such as decking or siding. The evaluation of underused invasive chaste wood in the production of tWPC production may result in an effective way to utilize this resource.\",\"PeriodicalId\":11427,\"journal\":{\"name\":\"Drvna Industrija\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drvna Industrija\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5552/drvind.2022.2128\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drvna Industrija","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5552/drvind.2022.2128","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

研究了落叶入侵灌木牡荆树(Vitex agnus-castus plant)作为木质纤维素填料在热塑性复合材料中的潜在应用。研究使用了土耳其西部穆格拉市直径为5-10厘米的贞洁树的茎。通过0.237 mm筛网开口的不同数量的木粉(0 - 50% wt%,以10%的增量)被添加到聚丙烯基体中。将预混好的原料放入双螺杆挤出机的容积给料机中。在恒定螺杆转速(40 rpm)下,挤出机筒体温度从170℃(进料区)逐渐升高到模具区(190℃)。然后,将干燥后的颗粒在2 MPa、190℃条件下热压成4 mm厚的木塑板5 min,加入3 wt%的马来酸酐接枝聚丙烯(MAPP)作为相容剂。随着聚丙烯中填料的添加量从10%增加到50%,WPCs的厚度膨胀率从0.58%增加到5.68%。当纯木粉添加量增加到30 wt%时,聚丙烯复合材料的抗弯强度由33.9 MPa提高到44.8 MPa,但随着纯木粉添加量的增加,拉伸强度下降(25.7 MPa)。当木材掺量达到50%时,弯曲模量由815 MPa增加到3250 MPa。当木材含量从10%增加到50%时,拉伸模量从1690增加到2253 MPa。未填充聚丙烯的拉伸强度、拉伸模量、抗弯强度和抗弯模量分别为19.6 MPa、1505 MPa、30.2 MPa和664 MPa。试验结果表明,含30 ~ 40%的牡茱萸可有效地用于半建筑用途的聚丙烯复合材料,如甲板或壁板。对生产tWPC中未充分利用的入侵纯木进行评价,可为该资源的有效利用提供途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physical and Mechanical Properties of Thermoplastic Composites Filled with Wood Flour of Underutilized Chaste Tree
The potential use of a lignocellulosic filler, Vitex agnus-castus plant (Chaste tree), which is a deciduous invasive shrub, in thermoplastic composites was investigated. The stems of chaste trees with a diameter of 5-10 cm from Mugla city, Western Turkey, were used for the study. The different amounts (0 to 50 wt%, by 10 % increments) of the wood flour passing through the screen openings of 0.237 mm were added to the polypropylene matrix. Premixed raw materials were put into the volumetric feeder of the twin-screw extruder. The extruder barrel temperature was gradually increased from 170 °C (feeding zone) to the die zone (190 °C) at a constant screw speed (40 rpm). Then, the dried granules were hot-pressed into the 4 mm thick WPC panels at 2 MPa and 190 °C for 5 min. 3 wt% of maleic anhydride grafted polypropylene (MAPP) was added as compatibilizer into the formulation. The WPCs showed an increase in the thickness swelling (0.58 to 5.68 %) as the amount of the filler increased from 10 to 50 wt% in the polypropylene. The bending strength of the polypropylene composites increased from 33.9 to 44.8 MPa as the amount of the chaste wood flour was increased to 30 wt%, but further increase caused the decrease in the tensile strength (25.7 MPa). As for the bending modulus, it increased from 815 to 3250 MPa when the wood content reached 50 wt%. The tensile modulus increased from 1690 to 2253 MPa when the wood content arised from 10 to 50 wt%. The tensile strength, tensile modulus, flexural strength and flexural modulus of the unfilled polypropylene were found to be 19.6 MPa, 1505 MPa, 30.2 MPa and 664 MPa, respectively. According to the test results, it was concluded that the 30-40 wt% of Vitex agnus-castus wood could be efficiently used in the polypropylene composites for the semi-building applications such as decking or siding. The evaluation of underused invasive chaste wood in the production of tWPC production may result in an effective way to utilize this resource.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drvna Industrija
Drvna Industrija MATERIALS SCIENCE, PAPER & WOOD-
CiteScore
1.80
自引率
9.10%
发文量
32
审稿时长
>12 weeks
期刊介绍: "Drvna industrija" ("Wood Industry") journal publishes original scientific and review papers, short notes, professional papers, conference papers, reports, professional information, bibliographical and survey articles and general notes relating to the forestry exploitation, biology, chemistry, physics and technology of wood, pulp and paper and wood components, including production, management and marketing aspects in the woodworking industry.
期刊最新文献
Water Permeability and Adhesion Strength of Bio-based Coating Applied on Wood Usporedna studija dimenzijske stabilnosti i biološke trajnosti kemijski i toplinski modificirane topolovine Assessment of Condition of Wooden Mill in Kovačevići Area in Bosnia and Herzegovina Efficiency Assessment Based on Data Envelopment Analysis for Occupational Accidents and Diseases in Furniture Industry of Turkey Timber Strength Grading as Necessary Basis for Structural Design in Ex-YU Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1