用支持向量机求解两阶段随机规划的Benders割分类

Huiwen Jia, Siqian Shen
{"title":"用支持向量机求解两阶段随机规划的Benders割分类","authors":"Huiwen Jia, Siqian Shen","doi":"10.1287/IJOO.2019.0050","DOIUrl":null,"url":null,"abstract":"We consider Benders decomposition for solving two-stage stochastic programs with complete recourse based on finite samples of the uncertain parameters. We define the Benders cuts binding at the final optimal solution or the ones significantly improving bounds over iterations as valuable cuts. We propose a learning-enhanced Benders decomposition (LearnBD) algorithm, which adds a cut classification step in each iteration to selectively generate cuts that are more likely to be valuable cuts. The LearnBD algorithm includes two phases: (i) sampling cuts and collecting information from training problems and (ii) solving testing problems with a support vector machine (SVM) cut classifier. We run the LearnBD algorithm on instances of capacitated facility location and multicommodity network design under uncertain demand. Our results show that SVM cut classifier works effectively for identifying valuable cuts, and the LearnBD algorithm reduces the total solving time of all instances for different problems with various sizes and complexities.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Benders Cut Classification via Support Vector Machines for Solving Two-Stage Stochastic Programs\",\"authors\":\"Huiwen Jia, Siqian Shen\",\"doi\":\"10.1287/IJOO.2019.0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Benders decomposition for solving two-stage stochastic programs with complete recourse based on finite samples of the uncertain parameters. We define the Benders cuts binding at the final optimal solution or the ones significantly improving bounds over iterations as valuable cuts. We propose a learning-enhanced Benders decomposition (LearnBD) algorithm, which adds a cut classification step in each iteration to selectively generate cuts that are more likely to be valuable cuts. The LearnBD algorithm includes two phases: (i) sampling cuts and collecting information from training problems and (ii) solving testing problems with a support vector machine (SVM) cut classifier. We run the LearnBD algorithm on instances of capacitated facility location and multicommodity network design under uncertain demand. Our results show that SVM cut classifier works effectively for identifying valuable cuts, and the LearnBD algorithm reduces the total solving time of all instances for different problems with various sizes and complexities.\",\"PeriodicalId\":73382,\"journal\":{\"name\":\"INFORMS journal on optimization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS journal on optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/IJOO.2019.0050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/IJOO.2019.0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

基于不确定参数的有限样本,我们考虑求解具有完全追索权的两阶段随机规划的Benders分解。我们将在最终最优解处绑定的Benders割或在迭代中显著改进边界的割定义为有价值的割。我们提出了一种学习增强的Benders分解(LearnBD)算法,该算法在每次迭代中添加了一个切割分类步骤,以选择性地生成更有可能是有价值切割的切割。LearnBD算法包括两个阶段:(i)对切割进行采样并从训练问题中收集信息;(ii)使用支持向量机(SVM)切割分类器解决测试问题。我们在有容量的设施位置和不确定需求下的多用户网络设计的实例上运行LearnBD算法。我们的结果表明,SVM切割分类器可以有效地识别有价值的切割,并且对于不同大小和复杂度的不同问题,LearnBD算法减少了所有实例的总求解时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benders Cut Classification via Support Vector Machines for Solving Two-Stage Stochastic Programs
We consider Benders decomposition for solving two-stage stochastic programs with complete recourse based on finite samples of the uncertain parameters. We define the Benders cuts binding at the final optimal solution or the ones significantly improving bounds over iterations as valuable cuts. We propose a learning-enhanced Benders decomposition (LearnBD) algorithm, which adds a cut classification step in each iteration to selectively generate cuts that are more likely to be valuable cuts. The LearnBD algorithm includes two phases: (i) sampling cuts and collecting information from training problems and (ii) solving testing problems with a support vector machine (SVM) cut classifier. We run the LearnBD algorithm on instances of capacitated facility location and multicommodity network design under uncertain demand. Our results show that SVM cut classifier works effectively for identifying valuable cuts, and the LearnBD algorithm reduces the total solving time of all instances for different problems with various sizes and complexities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty On the Hardness of Learning from Censored and Nonstationary Demand Temporal Bin Packing with Half-Capacity Jobs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1