A. Mahmoud, Frederic Vanderveken, F. Ciubotaru, C. Adelmann, S. Hamdioui, S. Cotofana
{"title":"基于自旋波的近似4:2压缩机:寻求最节能的数字计算范式","authors":"A. Mahmoud, Frederic Vanderveken, F. Ciubotaru, C. Adelmann, S. Hamdioui, S. Cotofana","doi":"10.1109/mnano.2021.3126095","DOIUrl":null,"url":null,"abstract":"In this article, we propose an energy-efficient spin wave (SW)-based approximate 4:2 compressor including three- and five-input majority gates. We validate our proposal by means of micromagnetic simulations and assess and compare its performance with state-of-the-art SW 45-nm CMOS and spin-CMOS counterparts. The evaluation results indicate that the proposed compressor consumes 31.5% less energy than its accurate SW-design version. Furthermore, it has the same energy consumption and error rate as a directional coupler (DC)-based approximate compressor, but it exhibits a 3× shorter delay. In addition, it consumes 14% less energy while having a 17% lower average error rate than its approximate 45-nm CMOS counterpart. When compared with other emerging technologies, the proposed compressor outperforms the approximate spin-CMOS-based compressor by three orders of magnitude in terms of energy consumption while providing the same error rate. Finally, the proposed compressor requires the smallest chip real estate measured in terms of devices.","PeriodicalId":44724,"journal":{"name":"IEEE Nanotechnology Magazine","volume":"16 1","pages":"47-56"},"PeriodicalIF":2.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Spin Wave-Based Approximate 4:2 Compressor: Seeking the most energy-efficient digital computing paradigm\",\"authors\":\"A. Mahmoud, Frederic Vanderveken, F. Ciubotaru, C. Adelmann, S. Hamdioui, S. Cotofana\",\"doi\":\"10.1109/mnano.2021.3126095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose an energy-efficient spin wave (SW)-based approximate 4:2 compressor including three- and five-input majority gates. We validate our proposal by means of micromagnetic simulations and assess and compare its performance with state-of-the-art SW 45-nm CMOS and spin-CMOS counterparts. The evaluation results indicate that the proposed compressor consumes 31.5% less energy than its accurate SW-design version. Furthermore, it has the same energy consumption and error rate as a directional coupler (DC)-based approximate compressor, but it exhibits a 3× shorter delay. In addition, it consumes 14% less energy while having a 17% lower average error rate than its approximate 45-nm CMOS counterpart. When compared with other emerging technologies, the proposed compressor outperforms the approximate spin-CMOS-based compressor by three orders of magnitude in terms of energy consumption while providing the same error rate. Finally, the proposed compressor requires the smallest chip real estate measured in terms of devices.\",\"PeriodicalId\":44724,\"journal\":{\"name\":\"IEEE Nanotechnology Magazine\",\"volume\":\"16 1\",\"pages\":\"47-56\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nanotechnology Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mnano.2021.3126095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nanotechnology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mnano.2021.3126095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
A Spin Wave-Based Approximate 4:2 Compressor: Seeking the most energy-efficient digital computing paradigm
In this article, we propose an energy-efficient spin wave (SW)-based approximate 4:2 compressor including three- and five-input majority gates. We validate our proposal by means of micromagnetic simulations and assess and compare its performance with state-of-the-art SW 45-nm CMOS and spin-CMOS counterparts. The evaluation results indicate that the proposed compressor consumes 31.5% less energy than its accurate SW-design version. Furthermore, it has the same energy consumption and error rate as a directional coupler (DC)-based approximate compressor, but it exhibits a 3× shorter delay. In addition, it consumes 14% less energy while having a 17% lower average error rate than its approximate 45-nm CMOS counterpart. When compared with other emerging technologies, the proposed compressor outperforms the approximate spin-CMOS-based compressor by three orders of magnitude in terms of energy consumption while providing the same error rate. Finally, the proposed compressor requires the smallest chip real estate measured in terms of devices.
期刊介绍:
IEEE Nanotechnology Magazine publishes peer-reviewed articles that present emerging trends and practices in industrial electronics product research and development, key insights, and tutorial surveys in the field of interest to the member societies of the IEEE Nanotechnology Council. IEEE Nanotechnology Magazine will be limited to the scope of the Nanotechnology Council, which supports the theory, design, and development of nanotechnology and its scientific, engineering, and industrial applications.