基于自旋波的近似4:2压缩机:寻求最节能的数字计算范式

IF 2.3 Q3 NANOSCIENCE & NANOTECHNOLOGY IEEE Nanotechnology Magazine Pub Date : 2022-02-01 DOI:10.1109/mnano.2021.3126095
A. Mahmoud, Frederic Vanderveken, F. Ciubotaru, C. Adelmann, S. Hamdioui, S. Cotofana
{"title":"基于自旋波的近似4:2压缩机:寻求最节能的数字计算范式","authors":"A. Mahmoud, Frederic Vanderveken, F. Ciubotaru, C. Adelmann, S. Hamdioui, S. Cotofana","doi":"10.1109/mnano.2021.3126095","DOIUrl":null,"url":null,"abstract":"In this article, we propose an energy-efficient spin wave (SW)-based approximate 4:2 compressor including three- and five-input majority gates. We validate our proposal by means of micromagnetic simulations and assess and compare its performance with state-of-the-art SW 45-nm CMOS and spin-CMOS counterparts. The evaluation results indicate that the proposed compressor consumes 31.5% less energy than its accurate SW-design version. Furthermore, it has the same energy consumption and error rate as a directional coupler (DC)-based approximate compressor, but it exhibits a 3× shorter delay. In addition, it consumes 14% less energy while having a 17% lower average error rate than its approximate 45-nm CMOS counterpart. When compared with other emerging technologies, the proposed compressor outperforms the approximate spin-CMOS-based compressor by three orders of magnitude in terms of energy consumption while providing the same error rate. Finally, the proposed compressor requires the smallest chip real estate measured in terms of devices.","PeriodicalId":44724,"journal":{"name":"IEEE Nanotechnology Magazine","volume":"16 1","pages":"47-56"},"PeriodicalIF":2.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Spin Wave-Based Approximate 4:2 Compressor: Seeking the most energy-efficient digital computing paradigm\",\"authors\":\"A. Mahmoud, Frederic Vanderveken, F. Ciubotaru, C. Adelmann, S. Hamdioui, S. Cotofana\",\"doi\":\"10.1109/mnano.2021.3126095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose an energy-efficient spin wave (SW)-based approximate 4:2 compressor including three- and five-input majority gates. We validate our proposal by means of micromagnetic simulations and assess and compare its performance with state-of-the-art SW 45-nm CMOS and spin-CMOS counterparts. The evaluation results indicate that the proposed compressor consumes 31.5% less energy than its accurate SW-design version. Furthermore, it has the same energy consumption and error rate as a directional coupler (DC)-based approximate compressor, but it exhibits a 3× shorter delay. In addition, it consumes 14% less energy while having a 17% lower average error rate than its approximate 45-nm CMOS counterpart. When compared with other emerging technologies, the proposed compressor outperforms the approximate spin-CMOS-based compressor by three orders of magnitude in terms of energy consumption while providing the same error rate. Finally, the proposed compressor requires the smallest chip real estate measured in terms of devices.\",\"PeriodicalId\":44724,\"journal\":{\"name\":\"IEEE Nanotechnology Magazine\",\"volume\":\"16 1\",\"pages\":\"47-56\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nanotechnology Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mnano.2021.3126095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nanotechnology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mnano.2021.3126095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种基于节能自旋波(SW)的近似4:2压缩器,包括三个和五个输入多数门。我们通过微磁模拟验证了我们的提案,并评估和比较了其与最先进的SW 45 nm CMOS和自旋CMOS的性能。评估结果表明,所提出的压缩机比其精确的SW设计版本消耗31.5%的能量。此外,它具有与基于定向耦合器(DC)的近似压缩器相同的能耗和错误率,但它表现出3倍短的延迟。此外,与大约45nm的CMOS对应物相比,它消耗的能量减少了14%,同时平均误差率降低了17%。与其他新兴技术相比,所提出的压缩器在能耗方面比基于近似自旋CMOS的压缩器高出三个数量级,同时提供相同的错误率。最后,所提出的压缩机需要以设备为单位测量的最小芯片不动产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Spin Wave-Based Approximate 4:2 Compressor: Seeking the most energy-efficient digital computing paradigm
In this article, we propose an energy-efficient spin wave (SW)-based approximate 4:2 compressor including three- and five-input majority gates. We validate our proposal by means of micromagnetic simulations and assess and compare its performance with state-of-the-art SW 45-nm CMOS and spin-CMOS counterparts. The evaluation results indicate that the proposed compressor consumes 31.5% less energy than its accurate SW-design version. Furthermore, it has the same energy consumption and error rate as a directional coupler (DC)-based approximate compressor, but it exhibits a 3× shorter delay. In addition, it consumes 14% less energy while having a 17% lower average error rate than its approximate 45-nm CMOS counterpart. When compared with other emerging technologies, the proposed compressor outperforms the approximate spin-CMOS-based compressor by three orders of magnitude in terms of energy consumption while providing the same error rate. Finally, the proposed compressor requires the smallest chip real estate measured in terms of devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Nanotechnology Magazine
IEEE Nanotechnology Magazine NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.90
自引率
6.20%
发文量
46
期刊介绍: IEEE Nanotechnology Magazine publishes peer-reviewed articles that present emerging trends and practices in industrial electronics product research and development, key insights, and tutorial surveys in the field of interest to the member societies of the IEEE Nanotechnology Council. IEEE Nanotechnology Magazine will be limited to the scope of the Nanotechnology Council, which supports the theory, design, and development of nanotechnology and its scientific, engineering, and industrial applications.
期刊最新文献
Guest Editorial [Guest Editorial] The MENED Program at Nanotechnology Council [Column] The Editors’ Desk [Editor's Desk] President's Farewell Message [President's Farewell Message] 2023 Index IEEE Nanotechnology Magazine Vol. 17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1