一种用于多车编组的非线性模型预测控制设计

IF 0.7 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY SAE International Journal of Transportation Safety Pub Date : 2021-10-12 DOI:10.4271/09-10-01-0004
Muhammad Goli, A. Eskandarian
{"title":"一种用于多车编组的非线性模型预测控制设计","authors":"Muhammad Goli, A. Eskandarian","doi":"10.4271/09-10-01-0004","DOIUrl":null,"url":null,"abstract":"Integrated control for automated vehicles in platoons with nonlinear coupled dynamics is developed in this article. A nonlinear MPC approach is used to address the multi-input multi-output (MIMO) nature of the problem, the nonlinear vehicle dynamics, and the platoon constraints. The control actions are determined by using model-based prediction in conjunction with constrained optimization. Two distinct scenarios are then simulated. The first scenario consists of the multivehicle merging into an existing platoon in a controlled environment in the absence of noise, whereas the effects of external disturbances, modeling errors, and measurement noise are simulated in the second scenario. An extended Kalman filter (EKF) is utilized to estimate the system states under the sensor and process noise effectively. The simulation results show that the proposed approach is a suitable tool to handle the nonlinearities in the vehicle dynamics, the complication of the multivehicle merging scenario, and the presence of modeling uncertainties and measurement noise.","PeriodicalId":42847,"journal":{"name":"SAE International Journal of Transportation Safety","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Nonlinear Model Predictive Control Design for Autonomous Multivehicle Merging into Platoons\",\"authors\":\"Muhammad Goli, A. Eskandarian\",\"doi\":\"10.4271/09-10-01-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated control for automated vehicles in platoons with nonlinear coupled dynamics is developed in this article. A nonlinear MPC approach is used to address the multi-input multi-output (MIMO) nature of the problem, the nonlinear vehicle dynamics, and the platoon constraints. The control actions are determined by using model-based prediction in conjunction with constrained optimization. Two distinct scenarios are then simulated. The first scenario consists of the multivehicle merging into an existing platoon in a controlled environment in the absence of noise, whereas the effects of external disturbances, modeling errors, and measurement noise are simulated in the second scenario. An extended Kalman filter (EKF) is utilized to estimate the system states under the sensor and process noise effectively. The simulation results show that the proposed approach is a suitable tool to handle the nonlinearities in the vehicle dynamics, the complication of the multivehicle merging scenario, and the presence of modeling uncertainties and measurement noise.\",\"PeriodicalId\":42847,\"journal\":{\"name\":\"SAE International Journal of Transportation Safety\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE International Journal of Transportation Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/09-10-01-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Transportation Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/09-10-01-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了具有非线性耦合动力学的车队中自动化车辆的集成控制。非线性MPC方法用于解决问题的多输入多输出(MIMO)性质、非线性车辆动力学和车队约束。通过使用基于模型的预测结合约束优化来确定控制动作。然后模拟两种不同的场景。第一种场景包括在没有噪声的受控环境中,多辆车合并到现有车队中,而在第二种场景中模拟外部干扰、建模误差和测量噪声的影响。利用扩展卡尔曼滤波器(EKF)来估计传感器下的系统状态,并有效地处理噪声。仿真结果表明,该方法是一种合适的工具,可以处理车辆动力学中的非线性、多车合并场景的复杂性以及建模不确定性和测量噪声的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Nonlinear Model Predictive Control Design for Autonomous Multivehicle Merging into Platoons
Integrated control for automated vehicles in platoons with nonlinear coupled dynamics is developed in this article. A nonlinear MPC approach is used to address the multi-input multi-output (MIMO) nature of the problem, the nonlinear vehicle dynamics, and the platoon constraints. The control actions are determined by using model-based prediction in conjunction with constrained optimization. Two distinct scenarios are then simulated. The first scenario consists of the multivehicle merging into an existing platoon in a controlled environment in the absence of noise, whereas the effects of external disturbances, modeling errors, and measurement noise are simulated in the second scenario. An extended Kalman filter (EKF) is utilized to estimate the system states under the sensor and process noise effectively. The simulation results show that the proposed approach is a suitable tool to handle the nonlinearities in the vehicle dynamics, the complication of the multivehicle merging scenario, and the presence of modeling uncertainties and measurement noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAE International Journal of Transportation Safety
SAE International Journal of Transportation Safety TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
1.10
自引率
0.00%
发文量
21
期刊最新文献
Experimental Study on Ship Squat in Intermediate Channel Study of Vehicle-Based Metrics for Assessing the Severity of Side Impacts Distilled Routing Transformer for Driving Behavior Prediction Reviewers Thermal Modeling of the Electric Vehicle Fire Hazard Effects on Parking Building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1